Аналоговый и дискретный способы представления изображений и звука. Пространственная дискретизация. Обработка графической информации Что такое пространственная дискретизация в информатике

Cлайд 1

Cлайд 2

Графическое изображение Аналоговая (непрерывная) Визуальная, воспринимается глазами человека. Пример, живописное полотно Дискретная (цифровая) Скачкообразная, воспринимается вычислительной техникой. Пример, изображение созданное струйным принтером принтером Преобразуется путем пространственной дискретизации

Cлайд 3

Пространственная дискретизация- это способ преобразования аналоговой формы информации в цифровую (дискретную). Графическое изображение преобразуется в растровое изображение (состоит из определенного количества точек и строк). Механизм: Изображение разбивается на отдельные фрагменты (точки, или пиксели), причем каждый фрагмент имеет свой цвет.

Cлайд 4

Пиксель – минимальный участок изображения, для которого независимым образом задается цвет

Cлайд 5

Разрешающая способность- определяет количество точек по горизонтали и вертикали на единицу длины изображения. Единица длины 1 дюйм=2,54 см Единица измерения разрешающей способности растрового изображения – dpi

Cлайд 6

Пространственная дискретизация- На практике осуществляется: Цифровыми фото- и видеокамерами; Сканированием.

Cлайд 7

Технология сканирования По поверхности изображения перемещается полоска светочувствительного элемента. Качество изображения, при этом, зависит от разрешающей способности сканера. Например, 1200х2400 dpi Оптическое разрешение, кол-во светочувствительных элементов на 1 дюйм полоски Аппаратное разрешение, кол-во «микрошагов», которые делает полоска светочувствительных элементов, перемещаясь на 1 дюйм вдоль изображения

Cлайд 8

Палитра цветов Набор цветов которые могут принимать точки изображения. При дискретизации, каждый минимальный участок изображения (точка или пиксель) получает определенный цвет из используемой палитры цветов.

Cлайд 9

Цвет точки – возможное ее состояние. N – количество цветов в палитре J – кол-во информации, необходимое для кодирования цвета точки. Пример, черно-белое изображение, N=2, т.е. всего одно из двух возможных состояний- белое или черное. J= 1 бит Количество информации, которое необходимо для кодирования цвета точки изображения, наз-ся глубиной цвета (J)

Cлайд 10

Глубина цвета и количество цветов в палитре Глубина цвета,J(битов) Кол-во цветов в палитре,N 8 2^8=256 16 2^16=65 536 24 2^24=16 777 216

Кардинальной проблемой численного моделирования миграцион­ных процессов является дискретизация в пространстве и во време­ни. При пространственной дискретизации наиболее часто употреб­ляются метод конечных разностей (МКР) и метод конечных эле-

Рис. 24. Схема квадратной ячейки сеточной модели миграционного потока:

■а - параметры свойств; б - результаты миграционного расчета. / - первичные результаты; 2 - билинейная интерполяция; 3 к 4 - расчетный и соседние узлы сеткн.

Ментов (МКЭ), основные положення которых описаны, например, в работах . В дальнейшем будем рассматривать только МКР, позволяющий более наглядно представить разност­ную модель процесса. При этом используются консервативные раз­ностные схемы, в основе которых находится составление баланса вещества в блоке (ячейке), относящемся к каждой узловой точке (метод составных ячеек ).

При этом для каждой ячейки определяют конвективные прито­ки и оттоки мигрантов при помощи линейной интерполяции между соседними узлами (что соответствует основной разности МКР) или используют значение концентраций с узла, из которого поступает мигрант (что соответствует обратной разности МКР). Для опре­деления притока и оттока мигранта вследствие дисперсии исполь­зуются также первые частные производные концентрации с пер­пендикулярно и параллельно границам ячеек, которые можно би­линейно установить по соседним значениям.

Рассмотрим основные положения решения проблемы дискрети­зации применительно к двумерному конвективно-дисперсионному потоку в гомогенной среде с учетом процессов распада по уравне­нию (3.8) при Кос-Я и действия миграционных источников-стоков с интенсивностью w. В таком случае дифференциальное уравнение конвективно-диффузионного переноса нейтрального мигранта в двумерном потоке (с координатами xt при хх=х и х2-у) имеет вид

TOC \o "1-3" \h \z д / г\ дс \ , де і, дс,

ID,------ І + ^і------------ ас 4- w = л0 -- . (7.1)

Если знак q выявляется только в результате расчета, то в об­щем справедливо соотношение

2qmkc _ (gtnk _J_ gmk) ck _J_ (qtnk _ [ qmk I)

Таким образом, получают линейную систему уравнений с п уравнениями (л - число ячеек с определяемыми значениями с), асимметричная матрица коэффициентов которых указывает на каждые четыре занятых верхних и нижних кодиагонала наряду с основными диагоналями. Изображаемые таким способом вычисли­тельные модели миграции примерно равнозначны моделям (мат­ричным уравнениям), сформулированным с помощью нормального МКР, а также моделям МК. Э с помощью линейной аппроксимации функций. Преимущество такой системы состоит в том, что здесь гарантируется максимальная наглядность математического описа­ния процесса.

В настоящее время при численном моделировании миграции почти исключительно используют для временной производной част­ную разность первого порядка и строят модель миграции, учитывая важность двух временных уровней. Тогда уравнение (7.1) для ми­грационной модели имеет вид

Неявная (см. рис. 25, б); у=\/2- Кранка - Никольсона (см. рис. 25, в); 7=2/3 - Галеркина (см. рис. 25, в).

Для Vе (0; 2/3; 1) доказывается порядок аппроксимации 0(Д0 и для y=: 1/2-0 (Дt) , Из разложения функций в ряд Тейлора сле­дует, что численную дисперсию вызывают как

Требует тонкой дискретизации. Даже обеспечение возможности коррекции коэффициента дисперсии DKop согласно выражению

TOC \o "1-3" \h \z Асор = D - [ I * I Д*/2 + А^2/(2я0)] > 0 (7:6)

Не исключает значительных затрат по дискретизации^ Для харак­теристики дискретизации процессов миграции пользуются безмер­ными числами, получаемыми из уравнения (7.3):

0 I v I Ах Ах Дtv* At I v I Редх = --! ж и Di

А для характеристики осцилляций - производными характеристи­ками

РеЛд: П0 Ах Ах П0 Ах2

Из уравнения следует, что значительные затраты на простран­ственную дискретизацию миграционных процессов оправданы лишь, когда одинаковый порядок величин имеет также погреш­ность временной дискретизации. Поэтому схема Крайка-Николь - сона с погрешностью порядка At2 часто используется в моделиро­вании, несмотря на связанные с этим опасения в отношении ста­бильности. Ее повышение достигается с помощью метода «предик­тор-корректор» Г10]. При этом согласно неявной схеме решения (Y=1) рассчитывается полушаг At/2 при исходном положении всех параметров ко времени t и определяются значения с*+Л(12. Затем по схеме Крайка-Никольсона (у= 1/2) реализуется весь шаг At, причем все параметры миграции, члены источников-стоков, обмена и замещения, а также член конвекции задаются на момент времени t+At/2. Таким образом, вычислительная модель уравне­ния (7.2) при полном шаге получается в таком виде (см. рис. 25):

Причем для dc/dt надо подставить одно-, дву - или трехмерное ис­ходное.дифференциальное уравнение, а для d2c/dt2 его производ­ную. Наконец, очень значительная точность аппроксимации дости­гается благодаря тому, что временная производная учитывается не только в точке п (это в общем виде относится также к членам источников-стоков ic и да), но и на соседних узлах. В наиболее простой форме эту подстановку осуществляют по правилу Симп - сона: dc/dt-(1/6) [{dc/dt)a-.i+4(dc/dt)n+(dc/di)n-1].

На рис. 25, е приведена также конечно-разностная схема для одномерных процессов миграции, предложенная Г. Стояном. Эта схема дает возможность управлять вычислением всех частных про­изводных и получать стабильные и точные численные решения, особенно для случаев чистой дисперсии или чистой конвекции.

Выбранный численный метод пригоден лишь в тех случаях, когда численное решение стремится к точному при уменьшающейся ширине. шага, т. е. когда этот метод является сходящимся.

Численная дисперсия вызывается прежде всего дискретностью членов:конвекции и емкости (аккумуляции), т. е. первыми произ­водными зависимых переменных. Это может приводить к значи­тельным погрешностям при моделировании миграционных процес­сов с? небольшим коэффициентом дисперсии £>, величина которых для различных численных моделей миграции получается в зависи­мости от Ре^лг и числа Di или Сг. Благодаря введению исправ< ленных. коэффициентов дисперсии [см., например, уравнение (7.6)] значительно уменьшаются погрешности и в простых дискретных схемах. (Стабильные обратные разности членов конвекции и акку­муляции, а также МК. Э с линейными пространственными и вре­менными начальными функциями приводят к значительной числен­ной дисперсии или требуют очень тонкой локальной и временной дискретизации.

Численные осцилляции происходят в определенных условиях и, как правило, определяются сравнением с соответствующими ана­литическими решениями. Опасность колебаний возникает преиму­щественно в процессах с доминирующей конвекцией. Особенно под­вержены осцилляциям схема Кранка-Никольсона, основная раз­ность членов конвекции или аккумуляции и формулировка МКЭ
по схеме Галеркина с линейными функциями. Вместе с тем неяв­ная схема, обратные разности членов конвекции и аккумуляции, а также формулировка МК. Э по Ритцу и по Галеркину с много­кратной коллокацией в значительной мере свободны от осцилля - ций. Вместе с тем чем «нейтральнее» численная схема, тем она точнее и чувствительнее к нарушениям. Поэтому применяемая на практике численная схема постоянно является компромиссом меж­ду обеими тенденциями.

Наряду с погрешностями дискретности имеют значение также погрешности в стабильности, вытекающие из ограниченного коли­чества численных расчетов. Безусловно стабильной считается чис­ленная модель миграции, если численная погрешность (округле­ния) уменьшается от одного временного шага к другому, а условно стабильной - если это происходит только при определенных усло­виях. Эти условия для особых случаев аналитически представлены в работе . Таким образом, сравнением с аналитическими ре­шениями фиксируется условие стабильности при заданной прост­ранственной дискретизации путем установления критической вели­чины временного шага через критические числа Di или Сг. Без­условно стабильной является неявная схема решения с у-1, при­чем с уменьшением у возрастает склонность к нестабильности. Численное решение составленной системы уравнений (матричное уравнение) также таит в себе возможности погрешностей. К очень большим погрешностям, сильно распространяющимся при услов­ном стабильном методе, может приводить решение системы урав­нений с плохо выраженными условиями, у которых элементы ос­новных диагоналей матрицы коэффициентов в недостаточной сте­пени преобладают по сравнению с основными диагоналями кодиа - гоналей.

Значительные погрешности в решении уравнений может вызы­вать решение всей системы уравнений с помощью частного метода шагов (например, неявного метода переменных направлений) и пе­реноса элементов матрицы коэффициентов в правую ч"асть урав­нений путем умножения на временные или итеративно зависимые переменные с обратной датировкой для создания ленточных мат­риц с незначительной шириной ленты (преимущественно тридиаго - нальные матрицы коэффициентов). По этой причине следует тща­тельно проверять и контролировать программы компьютера па численному моделированию миграции, особенно путем сравнения с аналитическими решениями.

На основе численного решения производится первичное опреде­ление числа опорных точек в пространственно-временной сетке. Число опорных точек по времени или по размеру итерационного шага при нелинейном решении указывает количество определяе­мых локально-дискретных значений зависимых переменных (Я или иногда vx, vy, с) и таким образом влияет на число уравнений си­стемы. Затраты времени на одноразовое решение этой системы уравнений являются основной величиной для оценки затрат; они зависят от типа ЭВМ, используемого метода для решения системы 124 уравнений и качества генерированной вычислительной программы. Если эти затраты умножить на число временных или итерацион­ных шагов, необходимых для моделирования, и прибавить к этому затраты времени на корректирование матриц коэффициентов и правой стороны уравнений, то получится время, необходимое для математического моделирования на ЭВМ. Потребность в месте накопителей для математического моделирования многомерных процессов миграции определяется прежде всего потребностью в месте накопления подпрограммы для решения системы уравнений.




















Пространственная дискретизация непрерывных изображений, хранящихся на бумаге, фото- и кинопленке, может быть осуществлена путем сканирования. В настоящее время все большее распространение получают цифровые фото- и видеокамеры, которые фиксируют изображения сразу в дискретной форме.











Глубина цвета и количество цветов в палитре Глубина цвета, i (битов) Количество цветов в палитре, N 42 4 = = = =


Графические режимы монитора Качество изображения на экране монитора зависит от величины пространственного разрешения и глубины цвета. Пространственное разрешение экрана монитора определяется как произведение количества строк изображения на количество точек в строке. Монитор может отображать информацию с различными пространственными разрешениями (800*600, 1024*768, 1152*864 и выше).


Графические режимы монитора Глубина цвета измеряется в битах на точку и характеризует количество цветов, в которые могут быть окрашены точки изображения. Количество отображаемых цветов также может изменяться в широком диапазоне: от 256 (глубина цвета 8 битов) до более 16 миллионов (глубина цвета 24 бита).




Графические режимы монитора Периодически, с определенной частотой, коды цветов точек отображаются на экране монитора. Частота считывания изображения влияет на стабильность изображения на экране. В современный мониторах обновление изображения происходит с частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия изображения пользователем. Пример Найдем объем видеопамяти для графического режима с пространственным разрешением 800х600 точек и глубиной цвета 24 бита. I П = i * X * Y = 24 бита х 600 х 800 = бит = байт = 1 406,25 Кбайт = 1,37 Мбайт


Задание Разрешающая способность экрана Глубина цвета х х 768 В мониторе могут быть установлены графические режимы с глубиной цвета 8, 16 и 24, 32 бита. Вычислить объем видеопамяти в Кбайтах, необходимый для реализации данной глубины цвета при различных разрешающих способностях экрана. Занести решение в таблицу.


Источники информации: - Угринович Н. Д. Учебник Информатика: учебник для 9 класса/ Н. Д. Угринович - 4-е изд. – М.:БИНОМ. Лаборатория знаний, – 178с..; - Угринович Н. Д., Босова Л.Л., Михайлова Н.И. Информатика и ИКТ: практикум/ Н. Д. Угринович, Л.Л. Босова, Н.И. Михайлова - М.:БИНОМ. Лаборатория знаний, – 394с. - Угринович Н. Д. Информатика и ИКТ классы: Методическое пособие/ Н. Д. Угринович – М.:БИНОМ. Лаборатория знаний, с.;

Пространственная дискретизация .

В процессе кодирования изображения производится его пространственная дискретизация. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол). Изображение разбивается на отдельные маленькие фрагменты (точки, причем каждому фрагменту присваивается значение его цвета, то есть код цвета (красный, зеленый, синий и так далее).

Дискретизация - это преобразование графической информации из аналоговой формы в дискретную, то есть разбиения непрерывного графического изображения на отдельные элементы.

Качество кодирования изображения зависит от:

1) частотой дискретизации , т.е. размером фрагментов, на которые делится изображение. Качество кодирования изображения тем выше, чем меньше размер точки и соответственно большее количество точек составляет изображение.

Выбор частоты дискретизации - это всегда компромисс между качеством воспроизведения мелких деталей и степенью сокращения информации. Как правило, в процессе дискретизации изображения определяется, как говорят, его "формат", т.е. количество образующих его элементов. При этом, естественно, меняется и размер изображения. Поэтому, чтобы исключить влияние этого дополнительного фактора (размера изображения) на исследуемый параметр, в настоящей работе применен искусственный прием: при изменении условий дискретизации размер изображения искусственно поддерживается постоянным.

2) глубиной кодирования , т.е. количество цветов. Чем большее количество цветов, то есть большее количество возможных состояний точки изображения, используется, тем более качественно кодируется изображение (каждая точка несет большее количество информации). Совокупность используемых в наборе цветов образует палитру цветов.

Графическая информация на экране монитора представляется в виде растрового изображения, которое формируется из определенного количества строк, которые в свою очередь содержат определенное количество точек (пикселей).

Пиксель - минимальный участок изображения, цвет которого можно задать независимым образом.

Каждый цвет можно рассматривать как возможное состояние точки, тогда количество цветов, отображаемых на экране монитора, может быть вычислено по формуле: N = 2i, где i -глубина цвета:(если глубина цвета (I)=8, то2^8 = 256)

Задача 1 . Рассмотрим формирование на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего 480 000 точек), В простейшем случае (черно-белое изображение без градаций серого цвета) каждая точка экрана может иметь одно из двух состояний - «черная» или «белая», то есть для хранения ее состояния необходим 1 бит.

ЗАДАЧА 2. Рассчитаем необходимый объем видеопамяти для одного из графических режимов, например, с разрешением 800 х 600 точек и глубиной цвета 24 бита на точку.

Всего точек на экране: 800 600 = 480 000. Необходимый объем видеопамяти:24 бит 480 000 = 11 520 000 бит = 1 440 000 байт = 1406,25 Кбайт = 1,37 Mбайт.

Описание:

Цели урока:

Образовательная:

ознакомиться с правилами безопасного поведения в кабинете информатики.

изучение способов представления графической информации, понятия пикселя, основных характеристик представления графической информации.

Развивающая:

продолжить развитие познавательных психических и эмоционально-волевых процессов: внимание, память, воображение.

Воспитательная:

внимательность,

аккуратность,

интерес к предмету.

Тип урока:

  • урок формирования новых знаний и умений.

Методы обучения по характеру познавательной деятельности:

  • Объяснительно-иллюстративный (формы: словесные, наглядные)
  • Репродуктивный (формы: практические, логические).

Оборудование урока:

  • компьютеры;
  • проектор;
  • экран (интерактивная доска);
  • учебник – Информатика. Учебник для 9 класса. Н.Д. Угринович;
  • Видеопрезентация «Правила поведения ы кабинете информатики».
  • презентация “Пространственная дискретизация».
  • тестирующая программа с автоматической проверкой ответов учащихся (MyTest)

Основные понятия:

  • аналоговое представление информации;
  • цифровое представление информации;
  • пространственная дискретизация;
  • пиксель;
  • разрешающая способность;
  • качество растрового изображения
  • глубина цвета;

План урока:

Ход урока

Организационный момент.

Приветствие учащихся. Проверка присутствующих, объявление темы и принципа работы на уроке.

Вводный инструктаж.

Проведение вводного инструктажа по технике безопасности и правилам поведения в компьютерном классе. (Видеопрезентация «Правила поведения ы кабинете информатики»).

Изучение нового материала.

С давних времен люди стремились передать свое восприятие мира в виде рисунка, картины. Ребята, обратите внимание на доску.

Слайды 2-4

Некоторые техники создания изображений появились за много веков до появления компьютера, во многих из них изображение строится из дискретных элементов. Во-первых, это такие направления искусства, как мозаика, витражи, вышивка. Во-вторых, это рисование «по клеточкам» - эффективный способ переноса изображения с подготовительного картона на стену, предназначенную для фрески. Суть этого метода заключается в следующем. Картон и стена, на которую будет переноситься рисунок, покрываются равным количеством клеток, затем фрагмент рисунка из каждой клетки картона тождественно изображается в соответствующей клетке стены.

Слайд 5

Графическая информация может быть представлена в аналоговой и дискретной формах. Аналоговая – непрерывная форма. Дискретная – цифровая форма. Преобразование информации из аналоговой формы в цифровую называется пространственной дискретизацией. Изображение разбивается на отдельные точки – пиксели.

Слайд 6

Графическое изображение из аналоговой (непрерывной) формы в цифровую (дискретную) преобразуется путем пространственной дискретизации. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики (большого количества разноцветных стекол). Изображение разбивается на отдельные маленькие фрагменты (точки, или пиксели), причем каждый элемент имеет свой цвет (красный, зеленый синий и т.д.)

Слайд 7

В результате пространственной дискретизации графическая информация представленная в виде растрового изображения, которое формируется из определенного количества строк, которые в свою очередь, содержат определенное количество точек.

Слайд 8

В компьютерной графике термин «пиксель», вообще говоря, может обозначать разные понятия:

наименьший элемент изображения на экране компьютера;

отдельный элемент растрового изображения;

точка изображения, напечатанного на принтере.

Поэтому, чтобы избежать путаницы, будем пользоваться следующей терминологией:

видеопиксель - наименьший элемент изображения на экране;

пиксель - отдельный элемент растрового изображения;

точка - наименьший элемент, создаваемый принтером.

Слайд 9

Пространственная дискретизация непрерывных изображений, хранящихся на бумаге, фото- и кинопленке, может быть осуществлена путем сканирования. В настоящее время все большее распространение получают цифровые фото- и видеокамеры, которые фиксируют изображения сразу в дискретной форме.

Слайд 10

Разрешающая способность. Важнейшей Характеристикой качества растрового изображения является разрешающая способность

Разрешающая способность растрового изображения определяется количеством точек как по горизонтали, так и по вертикали на единицу длины изображения.

Чем меньше размер точки, тем больше разрешающая способность (больше строк растра и точек в строке) и, соответственно, выше качество изображения. Величина разрешающей способности обычно выражается в dpi (dot per inch - точек на дюйм), т. е. в количестве точек в полоске изображения длиной один дюйм (1 дюйм = 2,54 см)

Качество растровых изображений, полученных в результате сканирования, зависит от разрешающей способности сканера, которую производители указывают двумя числами (например, 1200 х 2400 dpi).

Слайд 11

Сканирование производится путем перемещения полоски светочувствительных элементов вдоль изображения. Первое число является оптическим разрешением сканера и определяется количеством светочувствительных элементов на одном дюйме полоски. Второе число является аппаратным разрешением; оно определяется количеством "микрошагов", которое может сделать полоска светочувствительных элементов, перемещаясь на один дюйм вдоль изображения.

Слайды 12,13

Глубина цвета. В процессе дискретизации могут использоваться различные палитры цветов, т. е. наборы цветов, в которые могут быть окрашены точки изображения. Каждый цвет можно рассматривать как возможное состояние точки. Количество цветов N в палитре и количество информации I, необходимое для кодирования цвета каждой точки, связаны между собой и могут быть вычислены по формуле:

N=2 I

В простейшем случае (черно-белое изображение без градаций серого цвета) палитра цветов состоит всего из двух цветов (черного и белого). Каждая точка экрана может принимать одно из двух состояний - "черная" или "белая", следовательно, по формуле (1.1) можно вычислить, какое количество информации необходимо, чтобы закодировать цвет каждой точки:

2 = 2 I => 21 = 2I => I = 1 бит.

Наиболее распространенными значениями глубины цвета при кодировании цветных изображений являются 4, 8, 16 или 24 бита на точку. Зная глубину цвета, по формуле N=2I можно вычислить количество цветов в палитре.

Слайды 14,15

Глубина цвета и количество цветов в палитре

Слайд 16

Закрепление нового материала.

Контрольные вопросы:

Назовите виды представления графической информации.

  • Аналоговый (непрерывный);
  • Дискретный (цифровой).

В чем состоит суть метода пространственной дискретизации (ПД)?

  • ПД – процесс преобразования аналоговой графики в цифровую форму в результате которого исходное изображение разбивается на отдельные точки определенного цвета;

Какой тип изображения будет получен в результате пространственной дискретизации?

  • Растровое изображение

Что такое пиксель?

  • Пиксель – минимальный участок изображения для которого независимым образом можно задать цвет.

Какой аппаратный метод может быть применен для пространственной дискретизации?

  • Сканирование.

Чем определяется разрежающая способность растрового изображения?

  • …количеством точек по вертикали и горизонтали на единицу длины изображения

Укажите параметры растрового изображения.

  • Количество точек по вертикали на количество точек по горизонтали на единицу длины (дюйм).

Указано разрешение сканера 1200х2400 dpi. Поясните что определяют цифровые показатели?

  • 1200 – оптическое разрешение определяется количеством светочувствительных элементов на одном дюйме полоски.
  • 2400 – аппаратное разрешение определяется количеством "микрошагов", которое может сделать полоска светочувствительных элементов, перемещаясь на один дюйм вдоль изображения.

Дайте определение глубины цвета.

  • Количество информации, которое используется для кодирования цвета точки изображения, называется глубиной цвета.

Сколько цветов в палитре при значении глубины цвета = 4?

  • 24=16

А теперь решим несколько задач:

Растровый графический файл содержит черно-белое изображение (без градаций серого) размером 100х100 точек. Какой объем памяти требуется для хранения этого файла?

  • 1000 бит;
  • 10000 бит;
  • 10000 байт.

Растровый файл, содержащий черно-белый (без оттенков серого) квадратный рисунок, имеет объем 200 байт. Рассчитайте размер стороны квадрата (в пикселях).

  • 1000.

Объем изображения, размером 40х50 пикселей, составляет 2000 байт. Изображение использует:

  • 8 цветов;
  • 256 цветов;
  • 16777216 цветов.

Известно, что видеопамять компьютера имеет объем 512 Кбайт. Разрешающая способность экрана 640 на 200 пикселей. Сколько страниц экрана одновременно разместится в видеопамяти при палитре из 8 цветов;16 цветов;256 цветов?

  • 512 Кбайт = 512 х 210 = 512 х 1024 = 524 288 байт. 524 288 х 8 = 4 194 304 бит – объем видеопамяти.
  • 640 х 200 х 8 = 1 024 000 объем видеостраницы при палитре из 8 цветов. 4 194 304 / 1 024 000 = 4,096 страницы.
  • 640 х 200 х 16 = 2 048 000 объем видеостраницы при палитре из 16 цветов. 4 194 304 / 2 048 000 = 2,048 страниц.
  • 1,024 страниц

Используются графические режимы с глубинами цвета 8, 16, 24 и 32 бита. Вычислить объемы видеопамяти, необходимые для реализации данных глубин цвета при различных разрешающих способностях экрана (800 х 600, 1024 х 768, 1152 х 864).

  • Всего точек на экране (разрешающая способность): 640 * 480 = 307200
  • Необходимый объем видеопамяти V= 4 бит * 307200 = 1228800 бит = 153600 байт = 153600 /1024 = 150 Кбайт.
  • Аналогично рассчитывается необходимый объем видеопамяти для других графических режимов.

Первичный контроль результатов учебной деятельности.

Фронтальное тестирование с использованием программного комплекса MyTest.

Домашнее задание.

Дополнительно:

Демонстрационный материал к уроку «Пространственная дискретизация» (17 слайдов)

Слайд 7

Просмотров