Жизненный цикл и модели жизненного цикла аис. Определение модели жц аис. Стадии жизненного цикла информационной системы

ЖЦИС - это период создания и использования ИС, начиная с момента возникновения потребности в ИС и заканчивая моментом полного ее выхода из эксплуатации.

Стадии жизненного цикла информационной системы:

1. Предпроектное обследование:

· сбор материалов для проектирования, при этом выделяют формулирование требований, с изучения объекта автоматизации, даются предварительные выводы предпроектного варианта ИС;

· анализ материалов и разработка документации, обязательно дается технико экономическое обоснование с техническим заданием на проектирование ИС.

2. Проектирование:

2.1 предварительное проектирование;

· выбор проектных решений по аспектам разработки ИС;

· описание реальных компонент ИС;

· оформление и утверждение технического проекта (ТП).

2.2 детальное проектирование:

· выбор или разработка математических методов или алгоритмов программ;

· корректировка структур БД;

· создание документации на доставку и установку программных продуктов;

· выбор комплекса технических средств с документацией на ее установку.

2.3 разработка техно-рабочего проекта ИС (ТРП).

2.4 разработка методологии реализации функций управления с помощью ИС и описанием регламента действий аппарата управления.

3. Разработка ИС:

· получение и установка технических и программных средств;

· тестирование и доводка программного комплекса;

· разработка инструкций по эксплуатации программно-технических средств.

4. Ввод ИС в эксплуатацию:

· ввод технических средств;

· ввод программных средств;

· обучение и сертификация персонала;

· опытная эксплуатация;

· сдача и подписание актов приемки-сдачи работ.

5. Эксплуатация ИС:

· повседневная эксплуатация;

· общее сопровождение всего проекта.

Модели жизненного цикла информационной системы :

· каскадная модель - предлагает переход на следующие этапы после полного осуществления работ по предыдущему этапу. Модель демонстрирует классический подход в любых прикладных областях;

· итерационная модель - поэтапная модель с промежуточным контролем и циклами обратной связи. Преимущество данной модели - поэтапные корректировки, которые обеспечивают меньшую трудоемкость по сравнению с каскадной. Однако время жизни каждого из этапов рассчитывается на весь период разработки;

· спиральная модель - данная модель делает упор на начальные этапы анализа и проектирования. Эта модель представляет собой итерационный процесс разработки, где каждая итерация (цикл), представляет собой законченный цикл разработки, приводящий к выпуску версии изделия (версии проекта ИС), который совершенствуется от итерации к итерации, чтобы стать значимой информационной системой. При этом каждый виток спирали соответствует поэтапной модели создания информационной системы. Т.о. углубляется и последовательно конкретизируется обоснованный вариант ИС, который и доводится впоследствии до реализации.



Основные способы построения ИС:

· разработка системы "под себя";

· использование прототипов - вместо полной системы создается прототип, отвечающий основным потребностям пользователей:

Определение основных запросов;

Создание рабочего прототипа;

Использование рабочего прототипа;

Пересмотр и улучшение прототипа;

Работа с окончательной версией прототипа;

· использование услуг сторонней организации для передачи функций управления ИС - организация использует специализированную фирму, которая выполняет управляющие функции по функционированию и развитию ИС компании.

Плюсы:

· гарантийное качество обслуживания;

· экономия денежных средств;

· человеческие ресурсы.

Минусы:

· не дешево;

· утечка информации;

· зависимость;

· потеря контроля за ИТ.

Систему управления экономическим объектом можно рассматривать как совокупность двух взаимосвязанных элементов (двух составных частей): субъекта управления (СУ) и объекта управления (ОУ).

Субъект управления представляет собой управленческий аппарат, объединяет в себе сотрудников, разрабатывающих планы, вырабатывающих требования к принимаемым решениям, а также контролирующих их выполнение.



Объект управления представляет собой непосредственно предприятие, которое осуществляет выполнение поставленных перед ним задач. В задачу объекта управления входит выполнение планов, выработанных управленческим аппаратом, т.е. реализация той деятельности, для которой создавалась система управления.

Субъект управления и объект управления связаны прямой и обратной связями. Прямая связь выражается потоком директивной информации, направляемой от управленческого аппарата к объекту управления, а обратная представляет собой поток отчетной информации о выполнении принятых решений, направляемый в обратном направлении (см. рис.12).

Директивная информация порождается управленческим аппаратом в соответствии с целями управления и информацией о сложившейся экономической ситуации, об окружающей среде. Отчетная информация формируется объектом управления и отражает внутреннюю экономическую ситуацию, а также степень влияния на неё внешней среды (задержки платежей, нарушения подачи энергии, погодные условия, общественно - политическая ситуация в регионе и т.д.). Таким образом, внешняя среда влияет не только на объект управления: она поставляет информацию и управленческому аппарату, решения которого зависят от внешних факторов (состояние рынка, наличие конкуренции, величина процентных ставок, уровень инфляции, налоговая и таможенная политика).

Взаимосвязь информационных потоков (П и О), средств обработки, передачи и хранения данных, а также сотрудников управленческого аппарата, выполняющих операции по переработке данных, и составляет информационную систему экономического объекта.

Потребность в управлении возникает при необходимости координации деятельности членов трудового коллектива, объединенных для достижения поставленных перед ними локальных и глобальных целей. Первоначально любая цель носит обобщенный характер и лишь в процессе уточнения она формализуется управленческим аппаратом в виде целевых функций.

В процессе управления экономическим объектом принимаются оперативные , тактические и стратегические решения. В соответствии с этим, обычно говорят, что управленческий аппарат состоит из трех уровней управления: оперативного , среднего ивысшего .

На высшем уровне управления экономическим объектом находятся менеджеры-руководители. Они определяют цели управления, внешнюю политику, материальные, финансовые и трудовые ресурсы, разрабатывает долгосрочные планы и стратегию их выполнения. В их компетенцию обычно входит проведение анализа рынка, уровня конкуренции, конъюнктуры и поиск альтернативных стратегий развития предприятия на случай выявления угрожающих тенденций в сфере его интересов.

На среднем уровне управления экономическим объектом находятся менеджеры-исполнители. На этом уровне основное внимание сосредоточено на составлении тактических планов, контроле за их выполнением, слежении за ресурсами и разработке управляющих директив для вывода предприятия на требуемый планами уровень.

На оперативном уровне управления экономическим объектом находятся менеджеры структурных подразделений (отделов, служб, цехов и т.д.). На данном уровне происходит реализация планов и составляются отчеты о ходе их выполнения. Основная задача оперативного управления заключается в согласовании всех элементов производственного процесса во времени и пространстве с необходимой степенью его детализации.

На каждом из уровней управления экономическим объектом выполняются работы, в комплексе обеспечивающие управление. Эти работы принято называть функциями. В зависимости от целей можно выделить функции различной степени общности. Типичными являются следующие функции: планирование , учет и контроль , анализ и регулирование .

Планирование - функция, посредством которой в идеальной форме реализуется цель управления. Планирование занимает значительное место в деятельности высшего руководства, меньшее - на среднем и минимальное - на оперативном уровне. Планирование на высшем уровне управления касается будущих проблем и ориентировано на длительный срок. На среднем уровне планирование осуществляется на более короткий срок, при этом план высшего уровня управления детализируется. Показатели на этом уровне более точные. Оперативное управление предполагает самую детальную проработку плана.

Учет и контроль - функции, направленные на получение информации о ходе работы предприятия проверки соответствия достигнутых результатов с плановыми. Учет принято подразделять на оперативный , бухгалтерский и статистический . Бухгалтерский учет в свою очередь может подразделяться на финансовый и управленческий . Учет в основном осуществляется на оперативном и среднем уровнях управления. На высшем уровне управления учет отсутствует, однако на его основе в полной мере выполняются анализ результатов производства и регулирование его ходом.

Анализ и регулирование - это сопоставление фактических показателей с нормативными (директивными, плановыми), определение отклонений, выходящих за пределы допустимых параметров, установление причин отклонений, выявление резервов, нахождение путей исправления создавшейся ситуации и принятие решения по выводу объекта управления на плановую траекторию. Действенным инструментом для выявления причин отклонений является факторный анализ, а для поиска путей выхода из создавшейся ситуации -э кспертные системы.

Взаимосвязь между уровнями управления и осуществляемыми ими функциями по объему выполняемых работ представлена в табл.7.

Н а рис. 12 представлена взаимосвязь основных этапов процесса управления экономическим объектом.


АИС существуют, как правило, на протяжении длительного отрезка времени, последовательно проходя в своем развитии несколько стадий объединенных жизненным циклом (ЖЦ) системы:

1) предпроектное обследование (или анализ) организации,

2) проектирование АИС,

3) реализация АИС,

4) внедрение АИС,

5) функционирование (эксплуатация, использование)

6) сопровождение АИС,

7) модернизация проекта АИС.

Жизненный цикл – период создания и использования информационной системы, охватывающий ее различные состояния, начиная с момента возникновения необходимости в данной информационной системе и заканчивая моментом ее полного выхода из эксплуатации.

Надо отметить, АИС является продуктом информационного производства, как автомобиль является продуктом машиностроительного производства, колбаса – продуктового производства и т.п., поэтому стадии ЖЦ АИС с 1 по 5 аналогичны этапам ЖЦ любого продукта .

ЖЦ АИС, как и автомобиля, может закончиться в результате физического износа , если в ЖЦ не проработан этап сопровождения , то есть ремонта и обслуживания, например, компьютеров и программ, находящихся в составе АИС (без сопровождения система не проработает и полгода). При наличии квалифицированного сопровождения АИС может существовать достаточно долго, но имеется угроза прекращения ЖЦ АИС из-за морального износа , устаревания АИС, если отсутствует этап модернизации АИС (без модернизации система не проработает больше 2 лет).

Физический износ АИС – невозможность удовлетворить требования организации к АИС из-за поломки, сбоя или отказа в работе компонентов системы.

Моральный износ АИС – прекращение удовлетворения требований организации и ее сотрудников к АИС, в результате применения устаревших автоматизированных информационных технологий и отсутствия поддержки новых требований пользователей.

Если в вашей организации подошли ответственно и комплексно к автоматизации, организовали соответствующим образом все стадии и этапы, то предел длительности ЖЦ АИС только время существования вашей организации , а это значит, потраченные средства на АИС не будут выброшены «на помойку» вместе с физически или морально устаревшей АИС.

Выше были перечислены все стадии ЖЦ АИС, но некоторые из них проходят параллельно, поэтому выделяют всего 5 этапов в ЖЦ АИС (рис.35):

На первом этапе «Предпроектное обследование » (рис. 33) принято выделять два основных подэтапа и один дополнительный подэтап:

1.1. проведение предпроектного обследования и сбор материалов обследования;

1.2. анализ материалов обследования и разработка на основе анализа технико-экономического обоснования (ТЭО) и технического задания (ТЗ);

1.3. выбор и разработка варианта концепции системы.

Целями этапа «предпроектное обследование» является следующее:

· сформулировать потребности в новой АИС, т.е. идентифицировать все недостатки существующей ИС;

· выбрать направление и определить экономическую целесообразность проектирования АИС.

Работы по проведению обследования начинаются с анализа первичных требований и планирования работ, которые занимают от 2 дней до 4 недель. Далее проводится само обследование деятельности предприятия (длительность обследования составляет 1-2 недели.)

Сначала создается описание и анализируется функционирование рассматриваемого предприятия или организации в соответствии с требованиями (целями), которые предъявляются к ней. Определяется оргштатная и топологическая структуры предприятия. Выявляются функциональные деятельности каждого из подразделений предприятия и функциональные взаимодействия между ними, информационные потоки внутри подразделений и между ними, внешние по отношению к предприятию объекты и внешние информационные взаимодействия. Определяется перечень целевых задач (функций) предприятия и проводится анализ распределения функций по подразделениям и сотрудникам.

Определяется перечень применяемых на предприятии средств автоматизации.

Далее осуществляется обработка результатов обследования и построение моделей деятельности предприятия следующих двух видов (отметим, что для построения каждой из требуемых моделей необходима интенсивная работа 6-7 квалифицированных системных аналитиков в течение 2-4 месяцев).

1. Строится Модель "как есть", представляющая собой "снимок" положения дел на предприятии (оргштатная структура, взаимодействия подразделений, принятые технологии, автоматизированные и неавтоматизированные бизнес-процессы и т.д.) на момент обследования и позволяющая понять, что делает и как функционирует данное предприятие с позиций системного анализа, а также на основе автоматической верификации выявить ряд ошибок и узких мест и сформулировать ряд предложений по улучшению ситуации.

2. Формируется Модель "как должно быть", интегрирующая перспективные предложения руководства и сотрудников предприятия, экспертов и системных аналитиков и позволяющая сформировать видение новых рациональных технологий работы предприятия. Она представляет собой концепцию будущей АИС.

Создание концепции будущей системы включает в себя проведение следующих работ:

Детальное изучение объекта автоматизации;

Необходимые научно-исследовательские работы (НИР), связанные с поиском путей и оценкой возможности реализации требований пользователя;

Разработка альтернативных вариантов концепции создаваемой АИС и планов их реализации;

Оценка необходимых ресурсов на их реализацию и обеспечение функционирования;

Оценка преимуществ и недостатков каждого варианта;

Сопоставление требований пользователя и характеристик предлагаемой системы и выбор оптимального варианта;

Определение порядка оценки качества и условий приемки системы;

Оценка эффектов, получаемых от системы;

Оформление отчета, содержащего описание выполненных работ;

Описание и обоснование предлагаемого варианта концепции системы.

На основании построенной концепции системы и результатов обследования предприятия в части выявления требований к будущей системе формируется системный проект (модель требований), являющийся первой фазой разработки собственно системы автоматизации (именно, фазой анализа требований к системе), на которой требования заказчика уточняются, формализуются и документируются

Фактически на этом этапе дается ответ на вопрос: "Что должна делать будущая система?". Именно здесь лежит ключ к успеху всего проекта автоматизации. В практике создания больших программных систем известно немало примеров неудачной реализации именно из-за неполноты и нечеткости определения системных требований.

На этом этапе определяются:

§ архитектура системы, ее функции, внешние условия ее функционирования, распределение функций между аппаратной и программной частями;

§ интерфейсы и распределение функций между человеком и системой;

§ требования к программным и информационным компонентам системы, необходимые аппаратные ресурсы, требования к базе данных, физические характеристики компонент системы, их интерфейсы;

§ состав людей и работ, имеющих отношение к системе;

§ ограничения в процессе разработки (директивные сроки завершения отдельных этапов, имеющиеся ресурсы);

§ организационные процедуры, обеспечивающие защиту информации.

В рамках системного проектирования осуществляется:

Определение состава, структуры и характеристик функциональных задач в рамках деятельности структурных подразделений;

Определение состава и структуры программных средств автоматизации для технологии решения задач с учетом существующих средств в структурных подразделениях;

Определение структуры и характеристик информационного обеспечения технологии решения задач;

Разработка технических решений по построению информационного обеспечения (логических структур баз данных, структур классификаторов);

§ разработка состава автоматизируемых процедур документооборота.

Системный проект должен включать:

· полную функциональную модель требований к будущей системе;

· комментарии к функциональной модели (спецификации процессов нижнего уровня в текстовом виде);

· пакет отчетов и документов по функциональной модели, включающий характеристику объекта моделирования, перечень подсистем, требования к способам и средствам связи для информационного обмена между компонентами, требования к характеристикам взаимосвязей системы со смежными системами, требования к функциям системы;

· концептуальную модель интегрированной базы данных (пакет диаграмм);

· архитектуру системы с привязкой к концептуальной модели;

· предложения по оргштатной структуре для поддержки системы.

Таким образом, системный проект содержит функциональную, информационную и, возможно, событийную модели требований к будущей системе. Виды и последовательность работ при построении этих моделей требований аналогичны соответствующим работам по построению моделей деятельности. Дополнительно системный проект включает в себя техническое задание на создание автоматизированной системы.

Необходимо отметить следующее достоинство системного проекта. Для традиционной разработки характерно осуществление начальных этапов кустарными неформализованными способами. В результате заказчики и пользователи впервые могут увидеть систему после того, как она уже в большей степени реализована. Естественно, эта система отличается от того, что они ожидали увидеть. Поэтому далее следует еще несколько итераций ее разработки или модификации, что требует дополнительных (и значительных) затрат денег и времени. Ключ к решению этой проблемы и дает системный проект, позволяющий:

Описать, "увидеть" и скорректировать будущую систему до того, как она будет реализована физически;

Уменьшить затраты на разработку и внедрение системы;

Оценить разработку по времени и результатам;

Достичь взаимопонимания между всеми участниками работы (заказчиками, пользователями, разработчиками, программистами и т.д.);

Улучшить качество разрабатываемой системы, а именно: создать оптимальную структуру интегрированной базы данных, выполнить функциональную декомпозицию типовых модулей.

Системный проект полностью независим и отделяем от конкретных разработчиков, не требует сопровождения его создателями и может быть безболезненно передан другим лицам. Более того, если по каким-либо причинам предприятие не готово к реализации системы на основе проекта, он может быть положен "на полку" до тех пор, пока в нем не возникнет необходимость. Кроме того, его можно использовать для самостоятельной разработки или корректировки уже реализованных на его основе программных средств силами программистов отдела автоматизации предприятия.

Целью разработки «Технико-экономического обоснования» проекта АИС являются оценка основных параметров, ограничивающих проект, обоснование выбора и оценка основных проектных решений по отдельным компонентам проекта. При этом различают организационные параметры, характеризующие способы организации процессов преобразования информации в системе, информационные и экономические параметры, характеризующие затраты на создание и эксплуатацию системы, экономию от ее эксплуатации. Основными объектами параметризации в системе являются задачи, комплексы задач, экономические показатели, процессы обработки информации. После принятия решения о проведении дальнейших работ проводится ряд организационных мероприятий, например, должны быть изданы соответствующие приказы по проведению работ; должны быть назначены ответственные по направлениям и т.д.

Без подобной поддержки со стороны руководства предприятия бессмысленно вообще затевать проект.


Рисунок 33. Последовательность работ на этапе предпроектной стадии ЖЦ АИС.

Далее создается техническое задание (ТЗ) на проект, в котором отражаются технические условия и требования к будущей АИС, а также ограничения на ресурсы проектирования. Если проект требует научной проработки компонентов, то разрабатывается концепция будущей АИС на основе ТЗ.

В рамках формирования ТЗ проводится разработка предложений по автоматизации на основе выявленных и согласованных требований, которые включают:

Составление перечня автоматизированных рабочих мест предприятия и способов взаимодействия между ними;

Анализ применимости существующих систем управления предприятиями (прежде всего классов MRP и ERP) для решения требуемых задач и формирование рекомендаций по выбору такой системы;

Совместное с заказчиком принятие решения о выборе конкретной системы управления предприятием или разработке собственной системы.

Разработка предложений по техническим средствам;

Разработка предложений по программным средствам;

Разработка топологии, состава и структуры локальной вычислительной сети;

Разработка предложений по этапам и срокам автоматизации.

Если было принято решение о выборе конкретной системы управления, то некоторые этапы пропускаются.

Второй этап «Проектирование » (рис.34) выполняет следующие подэтапы:

1) эскизное проектирование: уточнение требований ТЗ, оформление и утверждение эскизного проекта;

2) техническое проектирование: выбор проектных решений по всем аспектам разработки АИС, описание всех компонент АИС, оформление и утверждение технического проекта;

3) рабочее проектирование: выбор и разработка математических методов и алгоритмов программ, корректировка структуры баз данных (БД), создание документации на поставку и разработку программных продуктов, выбор комплекта технических средств АИС, создание документации на поставку и установку технических средств, разработка рабочего проекта АИС.

Целями этого этапа является следующее:

· разработать функциональную архитектуру АИС, которая отражает структуру и состав функциональных подсистем, для автоматизированной поддержки определенных функций управления организации;

· разработать системную архитектуру выбранного варианта АИС, то есть состав обеспечивающих подсистем.

Для сложных АИС большого размера, автоматизирующих крупное предприятие, холдинг, органы государственной власти и т.п., на подэтапе 1 «Эскизное проектирование » формулируются предварительные решения будущей АИС в целом и составляющих ее компонентам, в результате чего создается эскизный проект (ЭП). Разработка предварительных проектных решений по системе и ее частям включает:

Определение функции АИС;

Определение функции подсистем, их цели и эффекты;

Определение состава комплексов задач и отдельных задач;

Определение концепции информационной базы, ее укрупненная структура;

Определение функций системы управления базой данных;

Определение состава вычислительной системы;

Определение функции и параметры основных программных средств.

Разработка документации на эту часть проекта.

Если разрабатываемый проект является не очень сложным, предположим, автоматизируется малое предприятие, то этап работ пропускается.

На подэтапе 2. «Техническое проектирование » выполняются работы по логической разработке и выбору наилучших вариантов проектных решений, в результате чего создается технический проект (ТП). В рамках создания технического проекта проводится:

- преобразование системного проекта в технический проект (модель реализации), включающее следующие действия: уточнение логической модели (разработка подробной логики каждого процесса с использованием диаграмм потоков данных и спецификаций процессов), проектирование физической базы данных, построение иерархии функций модулей, подлежащих программированию, оценка затрат на реализацию.

Перечисленные работы должны выполняться консультантами-аналитиками совместно с проектировщиками системы - именно здесь и находится граница, разделяющая консалтинг и разработку. Тем не менее, желательно, чтобы на этапе реализации системы консультант также действовал в интересах заказчика, а именно: контролировал соответствие создаваемой программной системы системному и техническому проектам, а также участвовал в работах по ее расширению и модификации, т.к. планирование расширений должно осуществляться на основе модели требований.

- собственно работы по техническому проектированию :

Разработка общих решений по системе и ее частям,

Разработка общих решений по функционально-алгоритмической структуре системы,

Разработка общих решений по функциям персонала и организационной структуре,

Разработка общих решений по структуре технических средств,

Разработка общих решений по алгоритмам решений задач и применяемым языкам,

Разработка общих решений по организации и ведению информационной базы,

Разработка общих решений по системе классификации и кодирования информации,

Разработка общих решений по программному обеспечению;

Проводят разработку, оформление документации по всем частям проекта, в том числе документа «Постановка задачи» ,

Разработка и оформление документации на поставку изделий для комплектования АИС и/или технических требований (технических заданий) на их разработку;

Разработка заданий на проектирование в смежных частях проекта объекта автоматизации.

Подэтап 3. «Рабочее проектирование » связан с физической реализацией выбранного варианта проекта и получением документации рабочего проекта (РП).

На этом подэтапе осуществляется:

Разработка и оформление рабочей документации, содержащей все необходимые и достаточные сведения для обеспечения выполнения работ по вводу АИС в действие и ее эксплуатации, а также для поддержания уровня эксплуатационных характеристик (качества) системы в соответствии с принятыми проектными решениями и согласование, и утверждение этой документации;

Разработка программ и программных средств системы, а также выбор, адаптацию и/или привязку приобретаемых программных средств,

Разработка программной документации.

Организация тендеров на поставку комплектующих АИС изделий (программных и технических средств, программно-технических комплексов, информационных изделий).


Рисунок 34. Последовательность работ на этапе проектирование ЖЦ АИС.

При наличии опыта проектирования и небольшой сложности проекта все три подэтапа объединяются в один, в результате выполнения которого получается единый техно-рабочий проект (ТРП). В этом случае проект последовательно, по мере выполнения подэтапов, трансформируется из эскизного в рабочий проект.

Третий этап «Реализация » (Рис. 35) - это физическое проектирование системы в следующей последовательности:

1) получение и установка технических средств;

2) кодирование, тестирование и доводка программ;

3) получение и установка программных средств;

4) создание информационного обеспечения, включая наполнение баз данных;

5) разработка инструкций по эксплуатации программного обеспечения и технических средств, а также должностных инструкций для персонала.

Эти работы практически могут осуществляться параллельно.

На четверном этапе ЖЦ АИС «Внедрение » существуют следующие подэтапы:

1) опытное внедрение:

· ввод в опытную эксплуатацию технических средств,

· ввод в опытную эксплуатацию программных средств, проведение опытной эксплуатации всех компонентов и систем в целом,

· обучение и сертифицирование персонала.

Опытное внедрение заключается в проверке работоспособности элементов и модулей проекта, устранении ошибок на уровне элементов и связей между ними.

На этом этапе проводят работы по организационной подготовке объекта автоматизации к вводу АИС в действие, в том числе:

Реализацию проектных решений по организационной структуре АИС;

Обеспечение подразделений объекта управления инструктивно-методическими материалами;

Внедрение классификаторов информации;

Обучение персонала,

Проверка его способности обеспечить функционирование АИС.

На этом же этапе осуществляется комплектация АИС поставляемыми изделиями (программными и техническими средствами, программно-техническими комплексами, информационными изделиями), а также строительно-монтажные, пусконаладочные работы, проведение предварительных испытаний:

Осуществляют испытания АИС на работоспособность и соответствие техническому заданию в соответствии с подготовленными заранее программой и методикой предварительных испытаний;

Устранение неисправностей и доработку (при необходимости) программного обеспечения, внесение изменений в документацию на АИС, в том числе эксплуатационную в соответствии с протоколом испытаний.

Работы по опытному внедрению заканчиваются оформлением акта о завершении опытной эксплуатации .

2) промышленное внедрение (сдача в промышленную эксплуатацию):

· сдача в эксплуатацию,

· подписание актов приемки-сдачи работ.

Сдача в промышленную эксплуатацию заключается в организации проверки проекта на уровне функций и контроля соответствия его требованиям, сформулированным на стадии предпроектного обследования, т.е.:

Проводят испытание на соответствие техническому заданию в соответствии с подготовленными заранее программой и методикой приемочных испытаний;

Анализ результатов испытаний АИС и устранение недостатков, выявленных при испытаниях.

Заканчиваются работы оформлением акта о приемке АИС в постоянную эксплуатацию .

На последнем пятом этапе ЖЦ АИС выполняются эксплуатация, сопровождение и модернизация программных, технических средств и всего проекта.

Сопровождение АИС заключается в выполнении работ в соответствии с гарантийными обязательствами, осуществлении работ по устранению недостатков, выявленных при эксплуатации АИС в течение установленных гарантийных сроков и в осуществлении работ по внесению необходимых изменений в документацию на АИС.

Послегарантийное обслуживание заключается:

В осуществлении работ по анализу функционирования системы;

В выявлении отклонений фактических эксплуатационных характеристик АИС от проектных значений;

В установлении причин этих отклонений;

В устранении выявленных недостатков и обеспечении стабильности эксплуатационных характеристик АИС;

Во внесении необходимых изменений в документацию на АИС.

В зависимости от специфики создаваемых АИС и условий их создания допускается выполнение отдельных этапов работ до завершения предшествующих стадий, параллельное во времени выполнение этапов работ, включение новых этапов работ.


Рисунок 35. Этапы жизненного цикла АИС.

Жизненный цикл носит обычно итерационный характер: реализованные этапы ЖЦ, начиная с самых ранних, циклически повторяются в соответствии с новыми требованиями и изменениями внешних условий. На каждом этапе ЖЦ формируется набор документов и технических решений, которые являются исходными для последующих решений.

Наибольшее распространение получили три модели ЖЦ:

· каскадная модель (до 70-х годов) – последовательный переход на следующий этап после завершения предыдущего;

· итерационная модель (70 – 80-е годы) – с итерационными возвратами на предыдущие этапы после выполнения очередного этапа;

· спиральная модель (80 – 90-е годы) – прототипная модель, предполагающая постепенное расширение прототипа АИС.

Для каскадной модели ЖЦ характерна автоматизация отдельных несвязанных задач, не требующая выполнения информационной интеграции и совместимости, программного, технического и организационного сопряжения. В рамках решения отдельных задач каскадная модель по срокам разработки и надежности оправдывала себя. Применение этой модели ЖЦ к большим и сложным проектам, вследствие большой длительности процесса проектирования и изменчивости требований за это время, приводит к их практической нереализуемости.

Итерационная модель ЖЦ . Создание комплексных АИС предполагает проведение увязки проектных решений, получаемых при реализации отдельных задач. Подход к проектированию «снизу-вверх» обуславливает необходимость таких итерационных возвратов, когда проектные решения по отдельным задачам комплектуются в общие системные решения, и при этом возникает потребность в пересмотре ранее сформулированных требований. Как правило, вследствие большого числа итераций возникают рассогласования в выполненных проектных решениях и документации. Запутанность функциональной и системной архитектуры созданной АИС, трудность в использовании проектной документации вызывают на стадиях внедрения и эксплуатации сразу необходимость перепроектирования всей системы. Длительный ЖЦ разработки информационной системы заканчивается этапом внедрения, за которым начинается ЖЦ создания новой АИС.

Спиральная модель ЖЦ . Используется подход к организации проектирования АИС «сверху-вниз», когда сначала определяется состав функциональных подсистем, а затем постановка отдельных задач. Соответственно сначала разрабатываются такие общесистемные вопросы, как организация интегрированной базы данных, технология сбора, передачи и накопления информации, а затем технология решения конкретных задач. В рамках комплексов задач программирование осуществляется по направлению от головных программных модулей к исполняющим отдельные функции модулям. При этом на первый план выходят вопросы взаимодействия интерфейсов программных модулей между собой и с базой данных, а на второй план – реализация алгоритмов.

Каждый виток спирали соответствует поэтапной модели создания фрагмента АИС. На нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали. Происходит последовательное углубление и конкретизация деталей проекта, формируется его обоснованный вариант, который доводится до реализации.

В основе спиральной модели ЖЦ лежит применение прототипной технологии или RAD-технологии (rapid application development – технология быстрой разработки приложений).

Согласно этой технологии АИС разрабатывается путем расширения программных прототипов, повторяя путь от детализации требований к детализации программного кода.

Естественно, что при прототипной технологии сокращается число итераций и меньше возникает ошибок и несоответствий, которые необходимо исправлять на последующих итерациях, а само проектирование осуществляется более быстрыми темпами, упрощается создание проектной документации. Для более точного соответствия проектной документации разработанной АИС все большее значение придается ведению общесистемного репозитария и автоматизации проектирования, в частности использованию CASE(Computers Aids System Engineering)-технологий.

При использовании спиральной модели:

· происходит накопление и повторное использование проектных решений, средств проектирования, моделей и прототипов АИС и информационных технологий;

· осуществляется ориентация на развитие и модификацию системы и технологий в процессе их проектирования;

· проводится анализ риска и издержек в процессе проектирования системы.

Интерфейс – это сопряжение частей программных и технических средств, данных, технология общения человека с компьютером, в котором все информационные, логические, физические и электрические параметры отвечают установленным стандартам.

Прототип – минимальная версия системы, используемая для генерации или разработки полной версии

Репозитарий содержит информацию об объектах проектируемой АИС и взаимосвязях между ними, все подсистемы обмениваются данными с ним.

Каноническое проектирование АИС


Разработка и проектирование АИС начинается с создания концептуальной модели использования системы. Прежде всего должна быть определена целесообразность создания системы, ее конкретные функции и подлежащие автоматизации задачи. Должна быть выполнена оценка не только целей, но и возможностей создания системы. Далее проводится анализ требований к АИС, детальное проектирование, взаимосвязь этапов, программирование и тестирование, минимизация потерь при переходе от одного уровня представления информации к другому, интеграция в существующую систему, внедрение и поддержка.

Существует три класса методологий проектирования АИС :
· концептуальное моделирование предметной области;
· выявление требований и спецификация информационной системы через ее макетирование;
· системная архитектура программных средств, поддерживаемая инструментальными средствами CASE-технологии (CASE -- Computer Aided Software Engineering -- технология создания и сопровождения ПО различных систем).

Стадия создания автоматизированной системы — часть процесса создания АС, установленная нормативными документами и заканчивающаяся выпуском документации наАС, которая должна содержать модель системы на уровне данной стадии, изготовление несерийных компонентов или приемку АС в эксплуатацию.
Каждая стадия выделена по соображениям рационального планирования и организации работ и обязательно должна заканчиваться определенным результатом. Содержание документации на каждой стадии определяется составом и спецификой работ.
В ГОСТ 34.601-90 определено восемь стадий создания автоматизированных систем:

  1. Формирование требований к АС.
  2. Разработка концепции АС.
  3. Техническое задание.
  4. Эскизный проект.
  5. Технический проект.
  6. Рабочая документация.
  7. Ввод в действие.
  8. Сопровождение АС.
Можно выделить три периода создания системы: предпроектный, проектирование, ввод в эксплуатацию.
Стадии 1, 2, 3 относятся к первому периоду, стадии 4, 5, 6 — ко второму периоду, стадии 7, 8 — к третьему.
В предпроектный период разрабатывают технико-экономическое обоснование (ТЭО) и техническое задание (ТЗ) на проектирование системы. В этот период на стадии формирования требований к АС проводят три этапа работ:
  • обследование объекта предметной области и обоснование необходимости создания системы;
  • формирование требований пользователей к системе;
  • составление отчета о выполненной работе и заявки на разработку системы.
На стадии разработки концепции АС проводят четыре этапа работ:
  • изучение объекта;
  • проведение научно-исследовательских работ;
  • выбор варианта концепции системы из нескольких разработанных;
  • составление отчета о выполненной работе.
На 3-й стадии разрабатывают и утверждают техническое задание на создание АС.
Техническое задание (ТЗ) — это перечень основных эксплуатационных, технологических экономических и других требований, которым должен удовлетворять проектируемый объект на всех этапах его существования.После утверждения ТЗ начинается второй период создания АС — период проектирования системы.
Проектирование — процесс обоснованного выбора характеристик системы, формирования логико-математических и экономико-математических моделей, разработки документации.
На стадии создания эскизного проекта на 1-м этапе разрабатывают предварительные проектные решения по системе и ее частям, на 2-м — документацию наАС и ее части.
На 5-й стадии при создании технического проекта в четыре этапа проводят разработку:
  • проектных решений по системе и ее частям;
  • документации наАС и ее части;
  • документации на поставку изделий для комплектования АС и ТЗ на их разработку;
  • заданий н# проектирование в смежных частях проекта объекта автоматизации.
Третий период — ввод в эксплуатацию АС. Обеспечивают разработку нестандартного оборудования, комплектацию оборудования, материалов, покупных изделий, монтаж, наладку, внедрение.
На 7-й стадии система вводится в эксплуатацию в восемь этапов:
  • подготовка объекта автоматизации к вводу АС;
  • подготовка персонала;
  • комплектация АС программными, техническими, информационными средствами и изделиями;
  • строительно-монтажные работы;
  • пусконаладочные работы;
  • предварительные испытания;
  • опытная эксплуатация;
  • приемочные испытания.
Содержание этапов создания АС на различных стадиях
С целью улучшения управления ходом проектирования каждая стадия детализируется, т. е. разбивается на этапы.
Этап создания автоматизированной системы — часть стадии создания АС, определяемая по характеру работ, его результату или специализации исполнителей.
Современные методологии проектирования систем должны обеспечивать описание объектов автоматизации, описание функциональных возможностей АИС, спецификацию проекта, гарантирующую достижение заданных характеристик системы, детальный план создания системы с оценкой сроков разработки, описание реализации конкретной системы.

Жизненный цикл АИС
В основе создания и использования АИС лежит понятие жизненного цикла (ЖЦ).
Жизненный цикл является моделью создания и использования АИС, которая отражает различные состояния системы с момента возникновения в данном комплексе средств до момента его полного выхода из употребления.

Для АИС условно выделяют следующие основные этапы их жизненного цикла:
1. анализ -- определение того, что должна делать система;
2. проектирование -- определение того, как система будет функционировать: прежде всего спецификация подсистем, функциональных компонентов и способов их взаимодействия в системе;
3. разработку -- создание функциональных компонентов и отдельных подсистем, соединение подсистем в единое целое;
4. тестирование -- проверку функционального и параметрического соответствия системы показателям, определенным на этапе анализа;
5. внедрение -- установку и ввод системы в действие;
6. сопровождение -- обеспечение штатного процесса эксплуатации системы на предприятии заказчика.

Этапы разработки, тестирования и внедрения АИС обозначаются единым термином -- реализация.
На каждом этапе жизненного цикла порождается определенный набор технических решений и отражающих их документов, при этом для каждого этапа исходными являются документы и решения, принятые на предыдущем этапе.
Существующие модели жизненного цикла определяют порядок исполнения этапов в процессе создания системы, а также критерии перехода от этапа к этапу. Наибольшее распространение получили следующие модели.

Каскадная модель предполагает переход на следующий этап после полного завершения работ предыдущего этапа. Эта модель используется при построении АИС, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования. Это дает разработчикам свободу реализовать их как можно лучше с технической точки зрения. В эту категорию попадают сложные расчетные системы, системы реального времени и другие. Однако, этот подход имеет ряд недостатков, вызванных прежде всего тем, что реальный процесс создания системы никогда полностью не укладывается в жесткую схему. Например, в процессе создания программного обеспечения возникает потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений.

Спиральная модель опирается на начальные этапы жизненного цикла: анализ, предварительное и детальное проектирование.
Каждый виток спирали соответствует поэтапной модели создания фрагмента или версии системы, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали. Основная проблема - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов ЖЦ. Переход осуществляется в соответствии с планом, который составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков. Недостатком этого подхода являются нерешенные вопросы и ошибки, допущенные на этапах анализа и проектирования. Они могут привести на последующих этапах к проблемам и даже к неуспеху всего проекта. По этой причине анализ и проектирование должны выполняться особенно тщательной

Введение

1. Архитектура автоматизированных информационных систем и проблемы её совершенствования 13

1.1. Модели архитектуры и основные компоненты АИС 13

1.2. Проблемы развития АИС 47

1.3. Платформы реализации новой архитектуры АИС УП 53

1.4. Выводы по главе 1 57

2. Модель архитектуры АИС УП 58

2.1. Основные требования к АИС УП 59

2.2. Архитектура АИС УП 66

2.3. Компоненты АИС УП 89

2.4. Выводы по главе 2 102

3. Методы практической реализации АИС УП 104

3.1. Инструментальные средства разработки АИС УП 104

3.2. Опыт практической реализации модели АИС УП 111

3.3. Выводы по главе 3 123

4. Заключение 125

5. Терминология и аббревиатуры 128

6. Литература

Введение к работе

Деятельность современных предприятий связана с движением взаимозависимых и объёмных потоков материальных, финансовых, трудовых и информационных ресурсов. Управление процессами производственного и коммерческого цикла в условиях динамически изменяющейся политико-экономической среды требует оперативного принятия решений в сжатые сроки. Решение этой задачи в современных условиях невозможно без применения средств автоматизированной обработки технико-экономической информации.

На протяжении последних 40 лет автоматизированные информационные технологии (ИТ) активно применяются для решения задач учёта, планирования и анализа хозяйственной деятельности предприятий различных форм собственности, отраслевой принадлежности, организационной структуры и масштабов деятельности. За это время накоплен большой практический опыт создания автоматизированных информационных систем управления предприятиями (АИС УП), разработаны и получили всеобщее признание методологии управления, применение которых невозможно вне компьютерной среды. Можно с полной ответственностью утверждать, что АИС УП стали неотъемлемой составляющей инфраструктуры бизнеса. Теоретические и практические проблемы автоматизации экономических процессов глубоко исследованы в работах Глушкова В.М., Волкова СИ., Исакова В.И., Островского О.М., Подольского В.И., Ратмирова Ю.А., Романова А.Н., Хотяшова Э.Н., Брэди Р., Захмана Дж., Кука М., Финкельштейна К., Хаммера М. и других авторов. Предложенные ими подходы стали базой для применения вычислительной техники на предприятиях при решении задач учёта, планирования и анализа финансово-хозяйственной деятельности. Однако

предлагавшиеся ими модели не учитывали реалий экономики информационного общества и нынешнего уровня развития ИТ.

Развитие средств коммуникаций способствует все более тесному взаимодействию производителей с потребителями, поставщиков с покупателями, усиливает конкуренцию на рынке, расширяет границы локальных рынков до национальных и транснациональных, ускоряет время совершения экономических операций и финансовых транзакций. Внедрение глобальных компьютерных сетей в экономические процессы привело к появлению новых понятий: экономика информационного общества, электронный бизнес (e-business), электронная коммерция (e-commerce), электронная торговая площадка (e-marketplace) и др. Тенденции глобализации экономики нашли отражение в новой методологии организации бизнеса, в которой на первый план выходит проблематика повышения гибкости построения бизнес-процессов и эффективности взаимоотношений с клиентами и поставщиками.

Существующие концепции организации АИС УП основаны на функциональном подходе к распределению задач между ее подсистемами. Однако АИС, построенные как комплекс подсистем, ориентированных на отдельные функции управления, не лучшим образом соответствуют требованию неразрывности сквозных бизнес-процессов предприятия. Поэтому в последние годы все более популярным становится подход, при котором во главу угла ставятся бизнес-процессы, а не отдельные функции исполняющих их служб системы управления. Это требует разработки новой концепции архитектуры АИС УП. В то же время, очевидно, что переход на новую архитектуру АИС УП не может осуществиться одномоментно, поскольку за многие годы предприятиями и организациями внедрено в эксплуатацию большое число программных средств, реализующих решение важных задач управления, от использования которых нельзя отказаться сразу. К сожалению, большинство из них ориентировано на автономное функционирование, что существенно затрудняет комплексную интеграцию информационных потоков. Многие существующие программные продукты, обеспечивающие поддержку решения новых задач управления предприятием, возникших в условиях глобализации экономики, также разработаны без достаточной проработки интерфейсов взаимодействия с программными комплексами, реализующими решение смежных задач. В этих условиях особое значение приобретает задача синтеза комплексных систем управления предприятиями путем интеграции готовых компонент сторонних производителей, заказных решений и собственных разработок.

В публикациях учёных и практиков давно обсуждается идея реализации стандартов системной интеграции программных средств, поставляемых различными производителями. Прогресс системного инструментария привёл к появлению объектно-ориентированных и компонентных технологий разработки программного обеспечения (ПО), которые позволяют строить крупномасштабные системы из готовых блоков. Ведущие поставщики аппаратного и системного программного обеспечения (Intel, Microsoft, Sun, Oracle, IBM и др.), коммуникационных средств (Cisco, Nortel, Ericsson, Motorola), прикладных решений (SAP, PeopleSoft, Siebel и др.), авторитетные государственные, международные, коммерческие и некоммерческие организации и ассоциации (ISO, IEEE, ASCII, APICS, РосСтандарт и др.) к настоящему моменту разработали и активно внедряют на практике технологии интеграции аппаратных и программных средств, позволяющие создавать открытые системы на базе стандартов и протоколов обмена данными и взаимодействия компонент в гетерогенной среде в режиме реального времени.

Однако эти предложения дают лишь общесистемную платформу, которая требует существенных уточнений применительно к конкретной предметной области. В контексте практической реализации АИС УП механизмы проектирования и разработки информационных систем (ИС) с применением компонентных многозвенных архитектур на базе стандартов и протоколов открытых систем проработаны недостаточно.

В этой связи становится насущной проблема разработки теоретической платформы и выработки практических рекомендаций, направленных на построение АИС УП, обеспечивающих комплексную автоматизацию всех информационных процедур управления предприятиями и организациями.

Необходимость разработки целостного подхода к решению вопросов системной интеграции АИС УП и сквозной автоматизации микроэкономических процессов на базе современных ИТ определила выбор темы и направления данного исследования.

Целью исследования является разработка модели архитектуры АИС УП, обеспечивающей комплексную автоматизацию и информационную поддержку сквозных бизнес-процессов, и обоснование выбора инструментов ее системной интеграции с позиций современных информационных технологий.

Исходя из намеченной цели были поставлены и решены следующие научные и практические задачи:

Провести анализ и обобщить существующие подходы к проектированию, разработке и внедрению ПО АИС УП;

Классифицировать разновидности программных средств, используемых в практике управления предприятиями;

Исследовать существующие технологии и стандарты, обеспечивающие интеграцию разнородных программных средств;

Выявить проблемы, возникающие при интеграции программных средств, используемых в АИС УП;

Систематизировать требования, предъявляемые предприятиями к ПО АИС УП для обеспечения информационной поддержки сквозных экономических процессов;

Разработать модель архитектуры АИС УП и выделить основные её составляющие;

Разработать принципы взаимодействия и обмена данными компонент АИС УП;

Предметом исследования являются методы и инструменты разработки экономических информационных систем.

Объектом исследования являются ИС управления предприятиями.

Методика исследования основана на конкретных приложениях методологии научного познания в прикладных направлениях информатики и математики.

Цели и задачи исследования формулировались в соответствии с основным направлением работ по дальнейшему развитию и совершенствованию математических методов и средств вычислительной техники, применяемых в экономических предметных областях.

Наряду с общенаучным подходом, основанным на теории систем, в диссертации обобщается опыт разработки, внедрения и эксплуатации программных средств отечественных и зарубежных производителей, методов

реализации международных открытых стандартов построения информационных систем. На этой основе предлагается комплекс методических и практических рекомендаций, прошедших апробацию на российских и зарубежных предприятиях.

В работе использованы теоретические положения работ отечественных и зарубежных авторов в области:

Автоматизированной обработки экономической информации и моделирования экономических процессов ;

Методологий планирования и оперативного управления производством и материальными запасами ;

Реинжиниринга и компьютерного проектирования бизнес-процессов ;

Современных стандартов в информационных технологиях .

В ходе исследования проанализированы и использованы разработки, выполненные научными коллективами и отдельными учеными в Финансовой академии при Правительстве РФ, Всероссийском заочном финансово-экономическом институте, Московском государственном университете экономики, статистики и информатики, Санкт-Петербургском университете экономики и финансов им. Вознесенского, Научно-исследовательском финансовом институте и других организациях.

Информационную базу исследования составили программные продукты российских и зарубежных производителей, публикации в экономических и компьютерных изданиях, исследования международных исследовательских групп Gartner Group, Aberdeen, IDC, MetaGroup, DataQuest и др. , методические материалы ведущих отечественных и международных консалтинговых и аудиторских компаний, результаты исследований Ассоциации разработчиков программного обеспечения в области экономики,

исследования рынка программного обеспечения России и стран СНГ ЦИЭС "Бизнес-Программы-Сервис" .

Научная новизна диссертации заключается в разработке модели архитектуры АИС УП, ориентированной на комплексную автоматизацию сквозных бизнес-процессов, и предложений по ее реализации путем системной интеграции разнородных программных средств в распределённой гетерогенной сетевой среде на основе объектных и компонентных технологий.

Научную новизну содержат следующие результаты, полученные в диссертации:

Определение и классификация требований к функциональным возможностям ПО организационно-экономического управления предприятиями;

Модель архитектуры АИС УП, ориентированной на комплексную автоматизацию сквозных бизнес-процессов;

Принципы интеграции программных средств решения задач функциональных служб предприятия с базовым ПО управления бизнес-процессами, обменом данными и документооборотом;

Предложения по организации единого информационного пространства предприятия, доступного сотрудникам и партнёрам предприятия через корпоративный веб-портал;

Предложения по реализации единой системы формирования и классификации отчётности с применением аналитического инструментария;

Принципы реализации взаимодействия подсистем АИС УП на базе объектно-ориентированных и компонентных технологий и взаимодействия программных компонент в распределённой сетевой

среде в соответствии с промышленными стандартами и протоколами Интернет;

Механизм реализации адаптивных свойств модели архитектуры ПО АИС УП в соответствии с требованиями конкретного предприятия, основанный на возможностях настройки базовых подсистем к существующим и проектируемым рабочим процессам.

Практическая значимость диссертационной работы состоит в том, что реализация выдвинутых предложений позволяет создавать АИС УП, обеспечивающие эффективную поддержку информационных процедур управления деятельностью предприятия в условиях глобализации экономики и формирования информационного общества.

Предложенная в работе модель архитектуры АИС УП и рекомендации по её применению обладают достаточной гибкостью и универсальностью, что обеспечивает их применимость в построении ИС управления предприятиями различных форм собственности, отраслевой специфики и масштабов деятельности.

Самостоятельное практическое значение имеют:

Предложения по выбору и применению стандартов, протоколов и других механизмов, используемых при системной интеграции АИС УП;

Предложения по комплексной автоматизации сквозных бизнес-процессов и документооборота;

Предложения по созданию единого информационного пространства предприятия при помощи механизма веб-порталов;

Предложения по адаптации спирально-итерационного подхода при разработке и внедрении ПО АИС УП.

Практическая значимость работы оценена в конкретных проектах реализации предложенной проблемно-ориентированной модели системы автоматизации предприятия:

Комплексной системы управления предприятием «Флагман» компании «Инфософт»,

Системы управления взаимоотношениями с клиентами «eRelationship» корпорации «Pivotal Software» (Канада),

Системы корпоративной отчётности «Monarch ES» компании «DataWatch» (США),

Проекта интеграции информационных систем компаний «Совинтел» и «Теле Росс».

Учебный центр компании «Весть-МетаТехнология» применяет материалы, подготовленные автором на основе подхода, предложенного в ходе данного исследования, при проведении курсов по разработке информационных систем управления предприятиями (см. http://www.vest.msk.ru).

Материалы диссертационного исследования используются в научно-исследовательской и практической деятельности исполнительных органов Ассоциации разработчиков программного обеспечения в области экономики (АРЭП) и входящих в нее членов.

Основные положения работы докладывались и обсуждались на:

Конференции «Решения IBM в области интеграции бизнеса для телекоммуникационных компаний», представительство IBM в Восточной Европе (г. Москва, 18 июня 2002 г.);

Симпозиуме «Call Center CRM Solutions 2002/Центры обработки вызовов и управление взаимоотношениями с клиентами» (г. Москва, март 2002 г.);

Конференции разработчиков информационных систем на базе инструментария корпорации Centura Software Corp. (г. Берлин, Германия, 17-19 ноября 1999г.);

Конференции «ИнфоГород: практика и проблемы информатизации городов» (г. Москва, октябрь 1999 г.);

Научно-практических конференциях фирмы «Инфософт» (г. Москва, 1995-1999 гг.);

Конференции специалистов в области АСУ и КИС «Корпоративные системы» (Москва, апрель 1998 г. и 28-30 апреля 1997 г., организаторы: компания «СофтСервис» и представительства компаний Oracle, Informix, Sybase, Borland и Centura);

3-ей ежегодной конференции «Корпоративные базы данных 98» (Москва, 31 марта-3 апреля 1998 и 26-29 марта 1996 г., организаторы «Центр Информационных технологий» при участии ИД «Открытые системы»);

Конференции «Техником-97» (Москва, 24-26 ноября 1997 г., организаторы: фирма «СофтСервис», Российская Ассоциация Пользователей Oracle, представительства компаний Microsoft, Borland, Computer Associates, Lucent Software).

Проблемы развития АИС

Внедрение в экономику информационных технологий, проникновение компьютерных и коммуникационных средств в управление предприятием на всех уровнях, рост интереса к взаимодействию компаний через Интернет требуют концептуальных изменений в подходах к построению АИС УП. Это касается не только чисто технологических проблем создания и эксплуатации ИС, но и подходов к управлению бизнесом в условиях экономики информационного общества.

АИС УП должна обеспечить потребности в автоматизации и информатизации в масштабах всей организации, что ставит перед разработчиками ПО задачи: разработки платформы, способной обеспечить работу большого числа пользователей; поддержки средств коммуникаций и промышленных стандартов обмена данными и протоколов взаимодействия компонент; интеграции существующих разработок в единую систему.

Интеграция разнородных приложений в рамках единой АИС должна обеспечивать поддержку: сквозных бизнес-процессов; единого пользовательского интерфейса (портала); общего информационного пространства.

По нашему мнению суть поставленных проблем состоит не столько в технических аспектах реализации, сколько в необходимости использования принципиально новой модели архитектуры АИС УП.

Обобщим плюсы и минусы различных вариантов архитектуры ИС с точки зрения возможностей построения интегрированного решения.

Централизация обработки данных предъявляет высокие требования к серверам. При увеличении количества одновременно работающих пользователей (что неизбежно при автоматизации процессов в масштабе всего предприятия) нагрузки становятся чрезмерными для аппаратной платформы и используемого ПО. Применяя различные аппаратные решения (кластеризацию, многопроцессорность и другие формы объединения вычислительных ресурсов), а также распределённую обработку при помощи мониторов транзакций, серверов приложений и мощных промышленных СУБД, можно создавать действительно масштабируемые решения, разгружая центральные узлы не только за счёт увеличения мощности аппаратных средств, но и за счёт соответствующего построения программных компонент системы.

Однако, даже если центральный сервер БД способен обеспечить требуемую производительность, при таком построении ИС неизбежно возникают проблемы поддержки единой структуры общей БД, если отдельные программные компоненты ИС разрабатываются разными компаниями или даже командами разработчиков внутри одной и той же организации. Установка общей базы с доступом из программ решения различных прикладных задач позволяет обеспечить общее информационное пространство, перечисленные выше технологии позволяют обращаться к БД большому числу пользователей, однако это не дает гарантии правильной работы с разделяемыми данными. Остаётся проблема логической целостности данных. При использовании программ различных производителей становится неизбежным разделение данных по подсистемам, возможно, путем их денормализации и создания избыточных структур. Схематично архитектура с общей базой представлена на следующем рисунке (Рисунок 1-14). Как следует из приведённой схемы, модули не взаимодействуют, то есть нет вызова одного модуля другим в режиме реального времени, нет оперативной поддержки сквозного процесса. Данные сохраняются в базе, из которых они доступны другим модулям, которым необходимо содержать функции отслеживания изменений в ней, а от частоты проверки обновлений зависит актуальность данных. Примером сквозного процесса может быть выписка счёта сотрудником отдела сбыта. Если он использует для этого CRM-систему, сформированный счёт параллельно с выпиской должен быть обработан в модуле логистики ERP-системы для резервирования товара, и сразу после этого - финансовым модулем для увеличения задолженности покупателя. Для этого соответствующие модули должны проверить наличие нового счета. Если этого не сделать своевременно, может быть выписан счет на фактически зарезервированный товар.

Для того, чтобы разные модули могли работать с общей структурой БД, они должны быть изначально разработаны с расчётом на определённую структуру данных или использовать согласованный механизм метаданных (репозитарий).

При использовании иной архитектуры, когда разнородные БД ведутся на разных компьютерах (а, возможно, и в разных сетях) и используются автономными модулями (Рисунок 1-15), поддержание логической целостности данных является ещё более трудоёмкой задачей. В этом случае необходимо регламентировать и реализовать репликацию (синхронизацию) данных, унификацию справочников, правил кодирования и классификации, разработать или внедрить сам механизм репликации. Всё это требует организационных мер по синхронизации БД. Остаётся и проблема автоматического продолжения процесса (пример с выпиской счёта).

Платформы реализации новой архитектуры АИС УП

К началу XXI века в индустрии ИТ разработаны и освоены на промышленном уровне следующие решения, обеспечившие повсеместное внедрение ИТ в экономические процессы:

инструмент персональных вычислений, состоящий в том, что во многих видах работ исчезла необходимость в посредниках между постановкой задачи и ее исполнителем, то есть сотрудники функциональных служб предприятия способны выполнять находящиеся в их компетенции информационные процедуры при помощи компьютеров без привлечения или с минимальной поддержкой сопровождающего технического персонала;

средства автоматизированной поддержки согласованной совместной работы группы («команды») работников над одним проектом, документом, заданием и т.п.;

механизм электронных коммуникаций, позволивших во многих случаях исключить необходимость передачи бумажных документов, свести к минимуму необходимость во встречах, что особенно важно при территориальной удалённости участников того или иного делового процесса.

Благодаря этим решениям стала возможной автоматизация большинства рабочих процессов, происходящих как внутри предприятия в его финансово-хозяйственной, производственно-коммерческой деятельности, так и связанных с внешними функциями. Объединение программных и технических средств, автоматизирующих различные функции и рабочие места, позволяет связать в сквозные бизнес-процессы технологические (на базе оборудования и технических устройств) и рабочие процессы (с участием сотрудников всех подразделений предприятий). Таким образом, появляется принципиальная возможность решения проблемы оторванности пунктов возникновения данных от центров их хранения и обработки, разъединённости рабочих мест друг от друга.

Решение проблемы интеграции модулей АИС и выбора централизованного или децентрализованного подхода в организации их взаимодействия также возможно благодаря последним разработкам ведущих производителей системного ПО: операционных систем, веб-серверов, серверов приложений, СУБД и платформ промежуточного уровня (middleware platforms). Интеграция приложений становится возможной за счет применения объектно-ориентированной технологии разработки и компонентной многозвенной архитектуры . Ключевым принципом здесь является понятие программных интерфейсов и регламента их изменения и расширения (язык IDL).

Для работы в распределённой гетерогенной среде, какой является Интернет, активно разрабатываются спецификации веб-служб (web services), каждая из которых может реализовать одну или несколько бизнес-процедур или функций (business procedures, functions). Организация OASIS, институт BPMI и компании IBM, Microsoft и ВЕА опубликовали спецификации регулирования потоков работ в рамках бизнес-процессов BPEL4WS (Business Process Execution Language for Web Services), языки веб-служб XLANG и WSFL (Web Services Flow Language), а коалиция WfML - XPDL (XML Process Definition Language).

Тенденция состоит в том, чтобы из компонент с открытыми интерфейсами веб-служб комбинировать подсистемы, выполняющие логически завершённые циклы бизнес-процессов. При этом компоненты могут располагаться на различных разнесённых в сети серверах приложений и работать с одной или несколькими БД. Варьируя числом и взаимосвязями компонент, числом и расположением серверов сети, возможностью замены компонент или их перемещением по сети без потери совместимости, можно строить АИС, сохраняющую баланс централизации и децентрализации в управлении предприятием.

Технических препятствий к реализации подобной архитектуры нет. Современные промышленные серверы приложений (к примеру, MTS/COM+/.Net, ONE или J2EE/EJB) позволяют строить многозвенные системы, предоставляют общую платформу для доступа к различным веб-службам, обеспечивают транзакционную целостность операций, балансировку нагрузки при конкурентном доступе десятков тысяч пользователей в режиме реального времени, а также гарантируют отказоустойчивость и восстановление после сбоев.

Важным достижением индустрии ИТ являются получившие широкое распространение и признанные ведущими производителями ПО стандарты: протоколы взаимодействия компонент (COM/DCOM, CORBA, Java RMI ) и форматы обмена данными (EDI, XML , ).

Стандарт EDI и его отраслевые варианты (EDIFACT, XI2, HIPAA и др.) эксплуатируются в финансовой и производственной сфере Северной Америки и Европы с середины 70-х и доминируют на сегодняшний день во всём мире. С ростом популярности XML в Интернет EDI был переведён на XML.

На базе XML (DTD и XDR) разработаны, структурированы и форматированы данные в различных экономических сферах в виде так называемых предметных словарей или типов документов, к примеру, WIDL, OFX, FpML, IFX, XBRL, CRML и многочисленные другие на Западе, а также CommerceML.ru и XML Partnership/ARB в России. Американское общество по управлению производством и запасами APICS, которое занимается сертификацией систем класса ERP/MRP, публикует спецификации экономических сущностей в формате XML, к примеру, структуру и формат данных клиента или счёт-фактуры. Самодокументированность XML обеспечивает однозначное понимание данных как человеком, так и программами.

Архитектура АИС УП

Для построения модели архитектуры АИС УП будем рассматривать предприятие как совокупность трудовых, финансовых, материальных и информационных ресурсов, вовлечённых в бизнес-процессы для достижения бизнес-целей предприятия. Здесь под термином бизнес-цели понимаются стратегические долгосрочные задачи, поставленные собственниками и руководителями высшего звена, а также текущие задачи, назначенные руководителями верхнего и среднего звеньев. Бизнес-процессом или деловым процессом является последовательность действий сотрудников, операций на рабочих местах, а также функций, выполняемых ПО и техническими средствами в автоматическом режиме. Каждое действие или их последовательность назовём этапом процесса. Синонимами действий также могут быть операции, процедуры. Если этап требует действий сотрудника (ролевой группы, представителя или руководителя подразделения, а также лица, занимающего должностную позицию), то оно называется также заданием, а сотрудник - исполнителем. Последовательность действий в деловом процессе может быть неоднозначной, то есть описание процесса в виде направленного графа может включать ветвление с условиями перехода с одного этапа на другой. Типовые цепочки этапов могут быть выделены в подпроцессы. Движение заданий заданными этапами процесса называется маршрутом. Если процесс не может быть описан из-за произвольных переходов между этапами, решение о которых принимается исполнителем в ходе выполнения задания на текущем этапе, то этот случай называется свободной маршрутизацией.

АИС УП должна позволять формально описывать бизнес-процессы в графическом виде в форме направленного графа (орграфа), вершинами которого являются этапы, а рёбрами - переходы между этапами. В частном случае граф делового процесса выглядит как сетевой график, где вершины обозначают работы с указанием их длительности, а ориентированные рёбра (стрелки) показывают последовательность работ. В соответствии с описанием процесса, именуемого картой процесса, АИС УП должна управлять ресурсами (или, точнее, помогать руководителям предприятия управлять ими), назначать задания и их исполнителей, а также вызывать (активизировать) программные и аппаратные средства для запуска автоматизированных процедур.

Параметры масштаба предприятия воздействуют на организацию управления на конкретном предприятии, что отражается на требованиях к АИС УП. С другой стороны, АИС УП влияет на масштабы предприятия, к примеру, способствуя росту бизнеса. Изменение одного из параметров влечёт за собой обновление АИС так же, как и внедрение АИС способно изменить организацию управления.

Цель ориентации на бизнес-процессы при построении АИС УП состоит в том, чтобы найти общую платформу, на базе которой можно будет адекватно модифицировать АИС, не требуя полной реорганизации системы. Этой платформой является моделирование бизнес-процессов программными средствами управления процессами.

В качестве ядра АИС УП необходимо разработать систему, совмещающую несколько функций, рассмотренных в обзоре систем управления процессами (параграфы «1.1.7 Системы управления документооборотом» на стр. 31 и «1.1.8 Системы управления процессами» на стр. 34). В их числе: Workflow - подсистема управления рабочими и технологическими процессами, обеспечивающая предопределённую и свободную маршрутизацию заданий между исполнителями; Docflow - подсистема управления документооборотом и маршрутизацией документов с отслеживанием их состояний; Groupware - подсистема поддержки функций оперативного назначения заданий и свободной машрутизации (ad hoc) задач между членами группы исполнителей; Dataflow - маршрутизация данных, пакетов данных, сообщений между приложениями.

В отличие от принятой практики автономного применения систем такого рода мы здесь полагаем наличие общей карты процесса, общего модуля обработки этапов процесса, общего механизма назначения исполнителей и маршрутизации заданий и данных.

Таким образом, технологические данные, генерируемые техническими устройствами, фактографические данные, вводимые в ИС пользователями на рабочих местах (в т.ч. первичные документы), а также данные, формируемые программными приложениями, будут вноситься в АИС УП и доступны потребителям информации в режиме реального времени.

Схематически жизненный цикл обработки данных в АИС УП представлен на следующем рисунке (Рисунок 2-2). Данные, введённые вручную или поступившие из программных компонент, оформляются как документ, который далее обрабатывается модулем документооборота в соответствии с картой процесса. По маршруту обработки (если настройка системы требует этого) подсистема управления документооборотом вызывает модули функциональных подсистем для обработки финансовых, хозяйственных и других типов операций. В результате учётные данные сохраняются в структурированных БД. В свою очередь сами документы сохраняются в хранилище или базе неструктурированных данных. Все эти БД должны быть доступны аналитическим модулям подсистемы отчётности для генерации необходимых отчётов.

Опыт практической реализации модели АИС УП

С 1995 по 1999 годы под руководством автора диссертации была разработана система комплексной автоматизации управления предприятием «Флагман» компании «Инфософт», которая на текущий момент внедрена в более чем в ста крупных и средних промышленных, строительных, коммерческих, сельскохозяйственных предприятиях и бюджетных организациях России и стран СНГ. Система продолжает развиваться на базе ядра, разработанного автором, и к 2002 году «Флагман» включает более десяти основных подсистем, представленных на следующем рисунке (Рисунок 3-2):

Основой системы «Флагман» является базовый модуль «Документооборот», который отвечает за ввод, обработку, маршрутизацию и печать всех первичных документов. Другими базовыми модулями являются «Администрирование» и «Инструментальные средства», общие для всех функциональных модулей. Они позволяют настраивать ролевые группы и права доступа, АРМ вплоть до пунктов меню, макетов документов и шаблонов отчётов.

Преимуществами реализованной модели стали однократный ввод первичных документов, генерация учётных записей в функциональных подсистемах на основе этих документов, унификация работы с первичными документами.

Быстрое развитие подсистем и недостаточная стандартизация их взаимодействия привела к тому, что интеграция была проведена вокруг центральной базы данных и общих таблиц. Если не брать во внимание двухзвенную архитектуру, выбор которой был обусловлен уровнем развития средств разработки в 1995 году, то перекрёстная зависимость модулей стала основной проблемой для развития системы. Первые же её внедрения выявили недостаточность функций автоматизации документооборота одной только маршрутизацией документов и поставили вопрос о необходимости реализации модуля управления процессами (workflow).

Если рассматривать реализацию более детально, то модуль управления документооборотом представляет собой библиотеку объектов, включаемую во все подсистемы, а также компилируемую как автономный модуль. В библиотеку входят средства настройки видов и вариантов документов, состава полей, форм ввода и редактирования, перечня состояний, возможных комбинаций переходов из состояния в состояние, списка операций с привязкой к функциональным модулям, шаблонов и бланков печати, а также правил формирования реестров и журналов документов.

Операции с документами меняют их состояние, а также вызывают функции прикладных подсистем. Перечень функций заложен в каждую подсистему и специфичен для неё. Для сопровождающих программистов, занимающихся настройкой системы, доступны параметры функций и возможность привязки к ним полей документов при помощи формул. Это позволяет автоматизировать большинство финансовых операций, а также функции логистики, кадрового учёта и расчёта зарплаты, однако для полной реализации остаётся необходимость в языке составления сценариев (script).

В систему встроен генератор отчётов, общий для всех подсистем. Поскольку система основана на принципе интеграции вокруг центральной БД, то генератор имеет доступ ко всем данным независимо от принадлежности к модулям. Отчёты классифицируются в иерархическую структуру, каждый из макетов отчёта содержит шаблон для предварительного просмотра и печати, и SQL-запросы для формирования результирующего множества данных. Сгенерированные отчёты могут обрабатываться далее как документы.

Необходимо ещё отметить, что в системе «Флагман» реализован унифицированный внешний вид подсистем. Общий модуль администрирования элементов пользовательского интерфейса, функций АРМ, включая меню и панель инструментов, позволяет настраивать внешний вид единообразно.

На данный момент развитие ИТ требует обновления платформы системы «Флагман». В первую очередь необходимо перевести её на трёхзвенную архитектуру и развить модуль документооборота до полнофункциональной системы управления процессами. Также необходимо разработать механизмы интеграции внешних приложений, поскольку система обладает только средствами импорта и экспорта данных.

Тем не менее, многочисленные примеры успешного внедрения и промышленной эксплуатации системы «Флагман», рост числа её продаж в 2001-2002 годах свидетельствуют об экономической эффективности решения для автоматизации предприятий различных сфер деятельности, отраслей и масштаба.

В феврале 1999 г. система «Флагман» фирмы «Инфософт», созданная под руководством автора, была признана лучшей российской разработкой на инструментарии Centura Team Developer корпорацией Centura Software Corp. (США) и компанией «Интерфейс» (Россия). В 1999, 2000 и 2001 гг. КИС «Флагман» была сертифицирована как информационная система масштаба предприятия экспертами жюри конкурса «Бизнес-Софт», проводимого Ассоциацией разработчиков программного обеспечения в области экономики (АРЭП), ЦИЭС «Бизнес-Программы-Сервис», журналом «Бухгалтерский учет» и «Финансовой газетой».

Каскадный подход хорошо зарекомендовал себя при построении ИС, для которых в самом начале разработки можно достаточно точно и полно сформировать все требования с тем, чтобы предоставить разработчикам свободно реализовывать их технически как можно лучше. В эту категорию попадают сложные системы с большим количеством задач вычислительного характера системы реального времени и др.

Модель жизненного цикла АИС - это структура, описывающая процессы, действия и задачи, которые осуществляются и ходе разработки, функционирования и сопровождения в течение всего жизненного цикла системы.

Выбор модели жизненного цикла зависит от специфики, масштаба, сложности проекта и набора условий, в которых АИС создается и функционирует.

Модель ЖЦ АИС включает:

Результаты выполнения работ на каждой стадии;

Ключевые события или точки завершения работ и принятия решений.

В соответствии с известными моделями ЖЦ ПО определяют модели ЖЦ АИС -каскадную, итерационную, спиральную.

I. Каскадная модель описывает классический подход к разработке систем в любых предметных областях; широко использовалась в 1970-80-х гг.

Каскадная модель предусматривает последовательную организацию работ, причем основной особенностью модели является разбиение всей работы на этапы. Переход от предыдущего этапа к последующему происходит только после полного завершения всех работ предыдущего.

Выделяют пять устойчивых этапов разработки, практически не зависящих от предметной области

На первом этапе проводится исследование проблемной области, формулируются требования заказчика. Результатом данного этапа является техническое задание (задание на разработку), согласованное со всеми заинтересованными сторонами.

В ходе второго этапа, согласно требованиям технического задания, разрабатываются те или иные проектные решения. В результате появляется комплект проектной документации.

Третий этап - реализация проекта; по существу, разработка программного обеспечения (кодирование) в соответствии с проектными решениями предыдущего этапа. Методы реализации при этом принципиального значения не имеют. Результатом выполнения этапа является готовый программный продукт.

На четвертом этапе проводится проверка полученного программного обеспечения на предмет соответствия требованиям, заявленным в техническом задании. Опытная эксплуатация позволяет выявить различного рода скрытые недостатки, проявляющиеся в реальных условиях работы АИС.

Последний этап - сдача готового проекта, и главное здесь - убедить заказчика в том, что все его требования выполнены в полной мере.

Рис.1.1 Каскадная модель ЖЦ АИС



Этапы работ в рамках каскадной модели часто называют частями проектного цикла АИС, поскольку этапы состоят из многих итерационных процедур уточнения требований к системе и вариантов проектных решений. ЖЦ АИС существенно сложнее и длиннее: он может включать в себя произвольное число циклов уточнения, изменения и дополнения уже принятых и реализованных проектных решений. В этих циклах происходит развитие АИС и модернизация отдельных ее компонентов.

Преимущества каскадной модели:

1) на каждом этапе формируется законченный набор проект ной документации, отвечающий критериям полноты и согласованности. На заключительных этапах разрабатывается пользовательская документация, охватывающая все предусмотренные стандартами виды обеспечения АИС (организационное, информационное, программное, техническое и т. д.);

2) последовательное выполнение этапов работ позволяет планировать сроки завершения и соответствующие затраты.

Каскадная модель изначально разрабатывалась для решения различного рода инженерных задач и не потеряла своего значение для прикладной области до настоящего времени. Кроме того, каскадный подход идеально подходит для разработки АИС, как уже в самом начале разработки можно достаточно точно полно сформулировать все требования с тем, чтобы предоставить разработчикам свободу технической реализации. К таким АИС, в частности, относятся сложные расчетные системы и системы реального времени.

Недостатки каскадной модели:

Существенная задержка в получении результатов;

Ошибки и недоработки на любом из этапов проявляются, как правило, на последующих этапах работ, что приводит к необходимости возврата;

Сложность параллельного ведения работ по проекту;

Чрезмерная информационная перенасыщенность каждого из этапов;

Сложность управления проектом;

Высокий уровень риска и ненадежность инвестиций.

Задержка в получении результатов проявляется в том, что последовательном подходе к разработке согласование результатов с заинтересованными сторонами производится только е завершения очередного этапа работ. В результате может оказаться, что разрабатываемая АИС не соответствует требованиям, и такие несоответствия могут возникать на любом этапе разработки; кроме того, ошибки могут непреднамеренно вноситься и проектировщиками-аналитиками, и программистами, так как они не обязаны хорошо разбираться в тех предметных областях, для которых разрабатывается АИС.

Возврат на более ранние стадии. Этот недостаток является из проявлений предыдущего: поэтапная последовательная работа над проектом может привести к тому, что ошибки, допущенные на более ранних этапах, обнаруживаются только на последующих стадиях. В результате проект возвращается на предыдущий этап, перерабатывается и только затем передается в последующую работу. Это может послужить причиной срыва графика и усложнения взаимоотношений между группами разработчиков, выполняющих отдельные этапы.

Самый плохой вариант, когда недоработки предыдущего этапа обнаруживаются не на следующем этапе, а позднее. Например, на стадии опытной эксплуатации могут проявиться ошибки в описании предметной области. Это означает, что часть проекта должна быть возвращена на начальный этап работы.

Сложность параллельного ведения работ связана с необходимостью согласования различных частей проекта Чем сильнее взаимосвязь отдельных частей проекта, тем чаще и тщательнее должна выполняться синхронизация, тем сильнее зависят друг от друга группы разработчиков. В результате преимущества параллельного проведения работ просто теряются; отсутствие параллелизма негативно сказывается и на организации работы всего коллектива.

Проблема информационной перенасыщенности возникает вследствие сильной зависимости между различными группами разработчиков. Дело в том, что при внесении изменений в одну из частей проекта, необходимо оповещать тех разработчиков, которые использовали (могли использовать) ее в своей работе. При наличии большого числа взаимосвязанных подсистем синхронизация внутренней документации становится отдельной важнейшей задачей: разработчики должны постоянно знакомятся с изменениями и оценивать, как скажутся эти изменения на полученных результатах.

Сложность управления проектом в основном обусловлена строгой последовательностью стадий разработки и наличием сложных взаимосвязей между различными частями проекта. Регламентированная последовательность работ приводит к тому, что одни группы разработчиков должны ожидать результатов работы других команд, поэтому требуется административное вмешательство для согласования сроков и состава передаваемой документации.

В случае же обнаружения ошибок в работе необходим возврат к предыдущим этапам; текущая работа тех, кто ошибся, прерывается. Следствием этого обычно является срыв сроков выполнения как исправляемого, так и нового проектов.

Упростить взаимодействие между разработчиками и уменьшить информационную перенасыщенность документации можно, сокращая количество связей между отдельными частями проекта, но далеко не каждую АИС можно разделить на слабо связанные подсистемы.

Высокий уровень риска. Чем сложнее проект, тем дольше длится каждый этап разработки и тем сложнее взаимосвязи между отдельными частями проекта, количество которых также увеличивается. Причем результаты разработки можно реально увидеть и оценить лишь на этапе тестирования, т. е. после завершения анализа, проектирования и разработки - этапов, выполнение которых требует значительного времени и средств.

Запоздалая оценка порождает серьезные проблемы при выявлении ошибок анализа и проектирования - требуется возврат на предыдущие стадии и повторение процесса разработки. Однако возврат на предыдущие стадии может быть связан не только с ошибками, но и с изменениями, произошедшими в предметной области или в требованиях заказчика за время разработки. При этом никто не гарантирует, что предметная область снова не изменится к тому моменту, когда будет готова следующая версия проекта. Фактически это означает, что существует вероятность «зацикливания» процесса разработки: расходы на проект будут постоянно расти, а сроки сдачи готового продукта постоянно откладываться.

II. Итерационная модель (Поэтапная модель с промежуточным контролем ) заключается в серии коротких циклов (шагов) по планированию, реализации, изучению, действию.

Создание сложных АИС предполагает проведение согласований проектных решений, полученных при реализации отдельных задач. Подход к проектированию «снизу - вверх» обусловливает необходимость таких итераций возвратов, когда проектные решения по отдельным задачам объединяются в общие системные. При этом возникает потребность в пересмотре ранее сформировавшихся требований.

Преимущество итерационной модели в том, что межэтапные корректировки обеспечивают меньшую трудоемкость разработки по сравнению с каскадной моделью.

Недостатки итерационной модели:

· время жизни каждого этапа растягивается на весь период работки;

· вследствие большого числа итераций возникают рассогласования выполнения проектных решений и документации;

· запутанность архитектуры;

· трудности использования проектной документации на стадиях внедрения и эксплуатации вызывают необходимость перепроектирования всей системы.

III . Спиральная модель , в отличие от каскадной, но аналогично предыдущей предполагает итерационный процесс разработки АИС. При этом возрастает значение начальных этапов, таких как анализ и проектирование, на которых проверяется и обосновывается реализуемость технических решений путем создания прототипов.

Каждая итерация представляет собой законченный цикл разработки, приводящий к выпуску внутренней или внешней версии изделия (или подмножества конечного продукта), которое совершенствуется от итерации к итерации, чтобы стать законченной системой (рис. 1.2).

Рис. 1.2. Спиральная модель ЖЦ АИС

Таким образом, каждый виток спирали соответствует созданию фрагмента или версии программного изделия, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы на следующем витке спирали. Каждая итерация служит для углубления и последовательной конкретизации деталей проекта, в результате этого выбирается обоснованный вариант окончательной реализации.

Использование спиральной модели позволяет осуществлять переход на следующий этап выполнения проекта, не дожидаясь полного завершения текущего, - недоделанную работу можно будет выполнить на следующей итерации. Главная задача каждой итерации - как можно быстрее создать работоспособный продукт для демонстрации пользователям. Таким образом, существенно упрощается процесс внесения уточнений и дополнений проект.

Спиральный подход к разработке программного обеспечения позволяет преодолеть большинство недостатков каскадной модели, кроме того, обеспечивает ряд дополнительных возможностей, делая процесс разработки более гибким.

Преимущества итерационного подхода:

Итерационная разработка существенно упрощает внесение изменений в проект при изменении требований заказчика;

При использовании спиральной модели отдельные элементы АИС интегрируются в единое целое постепенно. Поскольку интеграция начинается с меньшего количества элементов, то возникает гораздо меньше проблем при ее проведении;

Снижение уровня рисков (следствие предыдущего преимущества, так как риски обнаруживаются именно во время интеграции). Уровень рисков максимален в начале разработки проекта, по мере продвижения разработки он снижается;

Итерационная разработка обеспечивает большую гибкость в управлении проектом, давая возможность внесения тактических изменений в разрабатываемое изделие. Так, можно сократить сроки разработки за счет снижения функциональности системы или использовать в качестве составных частей продукцию сторонних фирм вместо собственных разработок (актуально при рыночной экономике, когда необходимо противостоять продвижению изделия конкурентов);

Итерационный подход упрощает повторное использование компонентов, поскольку гораздо проще выявить (идентифицировать) общие части проекта, когда они уже частично разработаны, чем пытаться выделить их в самом начале проекта. Анализ проекта после нескольких начальных итераций позволяет выявить общие многократно используемые компоненты, которые на последующих итерациях будут совершенствоваться;

Спиральная модель позволяет получить более надежную и устойчивую систему. Это связано с тем, что по мере развития системы ошибки и слабые места обнаруживаются и исправляются на каждой итерации. Одновременно корректируются критические параметры эффективности, что в случае каскадной модели доступно только перед внедрением системы;

Итерационный подход позволяет совершенствовать процесс
разработки - в результате анализа в конце каждой итерации проводится оценка изменений в организации разработки; на следующей итерации она улучшается.

Основная проблема спирального цикла - трудность определения момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Иначе процесс разработки может превратиться в бесконечное совершенствование уже сделанного.

Вовлечение пользователей в процесс проектирования и копирования приложения позволяет получать замечания и дополнения к требованиям непосредственно в процессе проектирования приложения, сокращая время разработки. Представители заказчика получают возможность контролировать процесс создания системы и влиять на ее функциональное наполнение. Результатом является сдача в эксплуатацию системы, учитывающей большинство потребностей заказчиков.

Модель жизненного цикла и технология проектирования

Ранее мы говорили, что технология проектирования задает последовательность действий, необходимых для получения проекта ИС. Очевидно, что выполнение каждого из таких действий означает переход информационно системы из одного состояния в другое. Таким образом, всякая технология проектирования однозначно описывает некоторую модель жизненного цикла. С другой стороны, построив модель жизненного цикла информационной системы, то есть определив:

· задачи, состав и последовательность выполняемых работ;

· получаемые результаты каждого выполняемого действия;

· методы и средства, необходимые для выполнения работ;

· роли и ответственность участников;

· иную информацию, необходимую для планирования, организации и управления коллективной разработкой ИС,

мы получим однозначное описание выбранной нами технологии проектирования. Таким образом, модель жизненного цикла – это неотъемлемая и важнейшая часть технологии проектирования информационных систем.

Этапы и стадии проектирования

Часто смешивают понятия «этап» и «стадия» проектирования. Иногда говорят об этапах или фазах жизненного цикла, шагах проектирования. Возникает вопрос: как правильно?

Следует помнить, что в разных международных стандартах используемая терминология может отличаться. Мы будем, по возможности, ориентироваться на терминологию отечественных ГОСТов. Этапом проектирования будем называть часть процесса создания ИС, ограниченную некоторыми временными рамками и заканчивающуюся выпуском конкретного продукта (модели, документации, текста программы и т. п.). По общности целей этапы проектирования могут объединяться в стадии . Например, стадия «Технический проект», стадия «Внедрение» и т.п.

По опубликованным данным каждый этап разработки АИС требует определенных затрат времени. В основном (45-50 %) время уходит на кодирование, комплексное и автономное тестирование. В среднем разработка АИС занимает одну треть всего ЖЦ системы.

Рис. Распределение времени при разработке АИС

Стадии создания АИС (ISO/IEC 15288)

Стандарт ISO/IEC 12207 определяет структуру жизненного цикла, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания информационной системы.

Просмотров